Click here to Skip to main content
Click here to Skip to main content
Go to top

Photometric Normalisation Algorithms

, 14 Nov 2006
Rate this:
Please Sign up or sign in to vote.
Pre-processing faces images in order to increase the performance of verification and recognition algorithms

Sample Image - normalisation_algorithms.jpg

Output of multiscale retinex algorithm.

Introduction

The variation of illumination conditions of an object can produce large changes in the image plane, significantly impairing the performance of face verification and recognition algorithms. I present three photometric normalisation algorithms for use in pre-processing face images in order to be used in verification and recognition algorithms. Mainly I follow the ideas of paper "A Comparison of Photometric Normalisation Algorithms for Face Verification", James Short, Josef Kittler and Kieron Messer(2004) and "Lighting Normalization Algorithms for Face Verification", Guillaume Heusch, Fabien Cardinaux, Sebastien Marcel(2005). Multiscale retinex method is coded exactly like the theory says. The anisotropic and isotropic smoothing methods have a little modifications but essentially they are the same. If you want to see more details about them, you can see the papers previously mentioned.

Using the Code

You can apply the multiscale retinex method like:

MultiscaleRetinex retinex = new MultiscaleRetinex
	(param.Sigmas, param.Widths, param.FilterSize);
picFiltered.Image = retinex.Apply((Bitmap)bitmap.Clone());

This is the code of multiscale retinex algorithm:

public override unsafe Bitmap Apply(Bitmap bitmap)
{
    int count = sigmas.Length;
    Bitmap bmp;
    double[,] sum = new double[bitmap.Width, bitmap.Height];
    
    for (int i = 0; i < count;i++ )
    {
        bmp = new GaussianBlur(sigmas[i], size).Apply(bitmap);
        sum = SumBitmap(bmp,sum,widths[i]);
    }
    return Normalise(DivBitmap(bitmap, sum));
}

You can apply the isotropic smoothing method like:

IsotropicSmoothing iso = new IsotropicSmoothing(param.Value);
picFiltered.Image = iso.Apply((Bitmap)bitmap.Clone());

This is the code of isotropic smoothing algorithm:

public override unsafe Bitmap Apply(Bitmap bitmap)
{
    Bitmap = bitmap;
    Point size = PixelSize;
    double[,] src = new double[size.X, size.Y];
    bool first = true;
    byte N, S, E, W, A;
    double Lw, Le, Ls, Ln, tmp, min = 0, max = 0;
    
    LockBitmap();
    
    for (int y = 0; y < size.Y ; y++)
    {
        PixelData* pPixel = PixelAt(0, y);
        for (int x = 0; x < size.X ; x++)
        {
            tmp = pPixel->gray;
            
            //Applying the process to all pixels of image except to the borders
            if ((x > 0) && (x < size.X-1) && (y > 0) && (y < size.Y-1))
            {
                //Adjacent neighbouring pixels
                A = pPixel->gray;           //current
                E = PixelAt(x, y+1)->gray;  //east 
                S = PixelAt(x+1, y)->gray;  //south 
                N = PixelAt(x-1, y)->gray;  //north 
                W = PixelAt(x, y-1)->gray;  //west  
                
                //Ld refers to the derivative with respect to 
                //each of the four adjacent neighbouring pixels
                Lw = A - W;
                Le = A - E;
                Ln = A - N;
                Ls = A - S;
                
                //Isotropic smoothing
                tmp = A + smooth * (Ln + Ls + Le + Lw);
            }
            
            src[x, y] = tmp;
            
            //Computing the min and max values from all pixels of image
            if (first) { min = max = tmp; first = false; }
            else
            {
                if (tmp < min) min = tmp;
                else
                    if (tmp > max) max = tmp;
            }
            pPixel++;
        }
    }
    UnlockBitmap();
    return Normalise(src, min, max);
}

Sample Image - example_isotropic.jpg

Output of isotropic smoothing algorithm.

You can apply the anisotropic smoothing method like:

AnisotropicSmoothing anis = new AnisotropicSmoothing(param.Value);
picFiltered.Image = anis.Apply((Bitmap)bitmap.Clone());

This is the code of anisotropic smoothing algorithm:

public override unsafe Bitmap Apply(Bitmap bitmap) 
{
    Bitmap = bitmap;
    Point size = PixelSize;
    double[,] src = new double[size.X,size.Y];
    bool first = true;
    byte N, S, E, W, A;
    double Lw, Le, Ls, Ln, pw, pe, ps, pn, eps = .1, tmp, min = 0, max = 0;
    
    LockBitmap();
    
    for (int y = 0; y < size.Y; y++)
    {
        PixelData* pPixel = PixelAt(0, y);
        for (int x = 0; x < size.X; x++)
        {
            tmp = pPixel->gray;
            
            //Applying the process to all pixels of image except to the borders
            if ((x > 0) && (x < size.X-1) && (y > 0) && (y < size.Y-1))
            {
                //Adjacent neighbouring pixels
                A = pPixel->gray;           //current
                E = PixelAt(x, y+1)->gray;  //east 
                S = PixelAt(x+1, y)->gray;  //south 
                N = PixelAt(x-1, y)->gray;  //north 
                W = PixelAt(x, y-1)->gray;  //west  
                
                //Ld refers to the derivative with respect to 
                //each of the four adjacent neighbouring pixels
                Lw = A - W;
                Le = A - E;
                Ln = A - N;
                Ls = A - S;
                
                //Weber’s contrast inverse
                pw = Math.Min(A, W) / (Math.Abs(A - W) + eps);
                pe = Math.Min(A, E) / (Math.Abs(A - E) + eps);
                pn = Math.Min(A, N) / (Math.Abs(A - N) + eps);
                ps = Math.Min(A, S) / (Math.Abs(A - S) + eps);
                
                //Anisotropic smoothing
                tmp = A + smooth * (Ln * pn + Ls * ps + Le * pe + Lw * pw);
            }
            
            src[x, y] = tmp;
            
            //Computing the min and max values from all pixels of image
            if (first) { min = max = tmp; first = false; }
            else
            {
                if (tmp < min) min = tmp;
                else
                    if (tmp > max) max = tmp;
            }
            pPixel++;
        }
    }
    UnlockBitmap();
    return Normalise(src,min, max);
}

Sample Image - example_anisotropic.jpg

Output of anisotropic smoothing algorithm.

Credits

Versions

  • 1.0 14 Nov 2006

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)

Share

About the Author

mosquets
Web Developer
Cuba Cuba
No Biography provided

Comments and Discussions

 
Questionhow to setup mutiscale retinex config? Pinmemberpoi11922-Nov-12 0:36 
GeneralMy vote of 5 Pinmembermanoj kumar choubey26-Feb-12 21:46 
GeneralWeird output PinmemberTolga Birdal8-Nov-09 5:26 
GeneralBit color without loose face details PinmemberAriston Darmayuda22-Mar-07 7:26 
GeneralRe: Bit color without loose face details PinstaffChristian Graus22-Mar-07 7:37 
GeneralRe: Bit color without loose face details Pinmembermosquets22-Mar-07 9:51 
GeneralRe: Bit color without loose face details PinmemberAriston Darmayuda25-Mar-07 3:42 
GeneralColor Image Pinmemberjapacheco22-Jan-07 10:43 
GeneralRe: Color Image Pinmembermosquets23-Jan-07 4:05 
QuestionHow can I enhance the original image by the output of Multi Scale Retinex? PinmemberBrian Lau3-Dec-06 19:54 
AnswerRe: How can I enhance the original image by the output of Multi Scale Retinex? Pinmembermosquets4-Dec-06 4:17 

General General    News News    Suggestion Suggestion    Question Question    Bug Bug    Answer Answer    Joke Joke    Rant Rant    Admin Admin   

Use Ctrl+Left/Right to switch messages, Ctrl+Up/Down to switch threads, Ctrl+Shift+Left/Right to switch pages.

| Advertise | Privacy | Mobile
Web03 | 2.8.140922.1 | Last Updated 14 Nov 2006
Article Copyright 2006 by mosquets
Everything else Copyright © CodeProject, 1999-2014
Terms of Service
Layout: fixed | fluid