## Introduction

I have found multiple implementations of the Douglas-Peucker algorithm but not in any .NET language, so I decided to port it over. Jonathan de Halleux has a wonderful explanation here.

## Background

I needed to reduce polygons size to display on a map based on zoom levels.

## Using the Code

The code included is complete and should run out of the box in Visual Studio 2005.

If it does not, please let me know.

public static List<Point> DouglasPeuckerReduction
(List<Point> Points, Double Tolerance)
{
if (Points == null || Points.Count < 3)
return Points;
Int32 firstPoint = 0;
Int32 lastPoint = Points.Count - 1;
List<Int32> pointIndexsToKeep = new List<Int32>();
pointIndexsToKeep.Add(firstPoint);
pointIndexsToKeep.Add(lastPoint);
while (Points[firstPoint].Equals(Points[lastPoint]))
{
lastPoint--;
}
DouglasPeuckerReduction(Points, firstPoint, lastPoint,
Tolerance, ref pointIndexsToKeep);
List<Point> returnPoints = new List<Point>();
pointIndexsToKeep.Sort();
foreach (Int32 index in pointIndexsToKeep)
{
returnPoints.Add(Points[index]);
}
return returnPoints;
}
private static void DouglasPeuckerReduction(List<Point>
points, Int32 firstPoint, Int32 lastPoint, Double tolerance,
ref List<Int32> pointIndexsToKeep)
{
Double maxDistance = 0;
Int32 indexFarthest = 0;
for (Int32 index = firstPoint; index < lastPoint; index++)
{
Double distance = PerpendicularDistance
(points[firstPoint], points[lastPoint], points[index]);
if (distance > maxDistance)
{
maxDistance = distance;
indexFarthest = index;
}
}
if (maxDistance > tolerance && indexFarthest != 0)
{
pointIndexsToKeep.Add(indexFarthest);
DouglasPeuckerReduction(points, firstPoint,
indexFarthest, tolerance, ref pointIndexsToKeep);
DouglasPeuckerReduction(points, indexFarthest,
lastPoint, tolerance, ref pointIndexsToKeep);
}
}
public static Double PerpendicularDistance
(Point Point1, Point Point2, Point Point)
{
Double area = Math.Abs(.5 * (Point1.X * Point2.Y + Point2.X *
Point.Y + Point.X * Point1.Y - Point2.X * Point1.Y - Point.X *
Point2.Y - Point1.X * Point.Y));
Double bottom = Math.Sqrt(Math.Pow(Point1.X - Point2.X, 2) +
Math.Pow(Point1.Y - Point2.Y, 2));
Double height = area / bottom * 2;
return height;
}

## Points of Interest

The code is not overly complicated. It was fun to port this algorithm, since all I feel I do now a days is hold business' hands to help them try and solve business problems that there is no consensus on.

## History