12,070,351 members (52,976 online)
alternative version

101.9K views
84 bookmarked
Posted

# Mapping Images on Spherical Surfaces Using C#

, 9 Apr 2013 GPL3
 Rate this:
Mapping images on spherical surfaces using C#

## Introduction

This article describes how to map a flat 2D image (JPG, BMP, or GIF) on a sphere by using basic algebra.

The process is very simple where the x axis of the image will be mapped on sphere longitudes and the y axis of the image will be mapped on sphere latitudes.

The process of mapping is similar to proportion equations x-x0/y-y0 = px-x0/py-y0

```public static double MapCoordinate(double i1, double i2, double w1,
double w2, double p)
{
return ((p - i1) / (i2 - i1)) * (w2 - w1) + w1;
}```

Original image

Resulting image

## Background

### A Sphere Can Be Represented by Spherical Coordinates in R3

• phi (latitude angle)
• theta (longitude angle)

#### Image 2

• Where radius is a constant, phi=[-PI/2,PI/2], and theta=[0,2*PI]

### To Find the Cartesian Coordinates from Spherical Coordinates

• x = radius * sin(phi) * cos(theta)
• y = radius * sin(phi) * sin(theta)
• z = radius * cos(theta)
```double phi0 = 0.0;
double phi1 = Math.PI;
double theta0 = 0.0;
double theta1 = 2.0*Math.PI;```

## The Code

```System.Drawing.Image image1 = new Bitmap(Server.MapPath(
"./images/worldmap4.gif"));
Bitmap imgBitmap = new Bitmap(image1);```

Now we make a loop through the 2 dimensions of the image, map phi and theta angles from image coordinates, get the cartesian 3D coordinates from phi and theta, provide some rotation to the obtained 3D points and plot them with respective image color:

```for (int i = 0; i < imgBitmap.Width; i++)
{
for (int j = 0; j < imgBitmap.Height; j++)
{
// map the angles from image coordinates
double theta = Algebra.MapCoordinate(0.0, imgBitmap.Width - 1,
theta1, theta0, i);
double phi = Algebra.MapCoordinate( 0.0, imgBitmap.Height - 1,phi0,
phi1, j);
// find the cartesian coordinates
double x = radius * Math.Sin(phi) * Math.Cos(theta);
double y = radius * Math.Sin(phi) * Math.Sin(theta);
double z = radius * Math.Cos(phi);
// apply rotation around X and Y axis to reposition the sphere
RotX(1.5, ref y, ref z);
RotY(-2.5, ref x, ref z);
// plot only positive points
if (z > 0)
{
Color color = imgBitmap.GetPixel(i, j);
Brush brs = new SolidBrush(color);
int ix = (int)x + 100;
int iy = (int)y + 100;
graphics.FillRectangle(brs, ix, iy, 1, 1);
brs.Dispose();
}
}
}```

## The Rotation Functions [almost forgot]

Actually I made a 3D Math class, but here you will need only these functions

```public static void RotX(double angle, ref double y, ref double z)
{
double y1 = y * System.Math.Cos(angle) - z * System.Math.Sin(angle);
double z1 = y * System.Math.Sin(angle) + z * System.Math.Cos(angle);
y = y1;
z = z1;
}
public static void RotY(double angle, ref double x, ref double z)
{
double x1 = x * System.Math.Cos(angle) - z * System.Math.Sin(angle);
double z1 = x * System.Math.Sin(angle) + z * System.Math.Cos(angle);
x = x1;
z = z1;
}
public static void RotZ(double angle, ref double x, ref double y)
{
double x1 = x * System.Math.Cos(angle) - y * System.Math.Sin(angle);
double y1 = x * System.Math.Sin(angle) + y * System.Math.Cos(angle);
x = x1;
y = y1;
}```

See sample

## Share

 Engineer IBM Brazil
Senior Analyst

Founder of TIHunter Vagas de TI

## You may also be interested in...

 FirstPrev Next
 Re: Why? Werdna13-Aug-07 5:57 Werdna 13-Aug-07 5:57
 sweet Ben Daniel23-Jul-07 19:10 Ben Daniel 23-Jul-07 19:10
 Re: sweet andalmeida24-Jul-07 4:53 andalmeida 24-Jul-07 4:53
 Re: sweet N.L. Neilson2-Aug-07 12:01 N.L. Neilson 2-Aug-07 12:01
 Re: sweet andalmeida2-Aug-07 12:03 andalmeida 2-Aug-07 12:03
 Re: sweet andalmeida2-Aug-07 12:17 andalmeida 2-Aug-07 12:17
 Re: sweet N.L. Neilson2-Aug-07 12:51 N.L. Neilson 2-Aug-07 12:51
 Re: sweet andalmeida2-Aug-07 12:51 andalmeida 2-Aug-07 12:51
 done, just change the radius to a, b and c from the ellipse formula double x = a * Math.Sin(phi) * Math.Cos(theta); double y = b * Math.Sin(phi) * Math.Sin(theta); double z = c * Math.Cos(phi); http://www.simsysbr.com/articles/mapping/mappingapp2.aspx[^] Anderson J. Almeida Systems Analyst SimSysBr
 Re: sweet N.L. Neilson2-Aug-07 14:48 N.L. Neilson 2-Aug-07 14:48
 Last Visit: 31-Dec-99 19:00     Last Update: 9-Feb-16 13:48 Refresh « Prev12