Click here to Skip to main content
Click here to Skip to main content

Implementing Permutation Variations

, 14 Jul 2004 CPOL
Rate this:
Please Sign up or sign in to vote.
Several enhanced permutation algorithms created in iterative or recursive solution.

Introduction

As each programmer must have experienced, often you can modify a function only a little to meet the new requirement. Here I present such an example for permutation -- to enumerate all element arrangements for an ascending ordered list. For instance, for a string “abc” where 'a'<'b'<'c', we have permutations “abc”, “acb”, “bac”, “bca”, “cab”, and “cba”, while for a half ordered “cab”, the result is “cab” and “cba”. The following function picked from the STL header file “algorithm” shows how to generate the next permutation from the previous one.

template<class _BidIt> inline
bool next_permutation(_BidIt _First, _BidIt _Last)
{   
   _BidIt _Next = _Last;
   if (_First ==_Last || _First == --_Next) return (false);

   for (; ; )
   {   
      // find rightmost element smaller than successor
      _BidIt _Next1 = _Next;
      if (*--_Next < *_Next1)      
      {   // swap with rightmost element that's smaller
         _BidIt _Mid = _Last;
         for (; !(*_Next < *--_Mid);) ;

         std::iter_swap(_Next, _Mid);
         std::reverse(_Next1, _Last);   
         return (true);
      }

      if (_Next == _First)
      {   // pure descending, flip all
         std::reverse(_First, _Last);
         return (false);
      }
   }
}

To obtain all permutations, just set a loop like this:

   do v.insert(v.end(), s);
   while (next_permutation(s.begin(), s.end()));

Where s is a work string for character permutation and v is a vector to collect permuted s iteratively. In practice, we may meet some permutation variations, two of which are then discussed in this article.

With Non-Ordered Elements

First, consider a permutation variation in a list without a predicate defined for element comparison, in other words, a list without intrinsic order. So, the algorithm cannot rely on the comparisons by the “less than” operator “<” in next_permutation(). For example, either from string “abc” or “cab”, we always want all six permutations as mentioned above.

For this, I adapt the STL function to _next_permutation() by adding the third “map” parameter as shown in the following:

template<class _BidIt> inline
bool _next_permutation(_BidIt _First, _BidIt _Last, Position_Map* pMap/*=NULL*/)
{   
   _BidIt _Next = _Last;
   if (_First ==_Last || _First == --_Next) return (false);

   for (; ; )
   {   
      _BidIt _Next1 = _Next;
      if (pMap? (*pMap)[*--_Next] < (*pMap)[*_Next1]: *--_Next < *_Next1)      
      {   
         _BidIt _Mid = _Last;
         for (; !(pMap? (*pMap)[*_Next] < (*pMap)[*--_Mid]: *_Next < *--_Mid);); 

         std::iter_swap(_Next, _Mid);
         std::reverse(_Next1, _Last);   
         return (true);
      }

      if (_Next == _First)
      {   
         std::reverse(_First, _Last);
         return (false);
      }
   }
}

vector<string> StlPermutation(const char* sz, bool bOrdered/*=true*/)
{
   vector<string> v;
   string s = sz;
   Position_Map mapPos;

   if (!bOrdered)
      for (unsigned int i=0; i<s.length(); i++)
         mapPos.insert(Position_Pair(s[i], i));   

   do   v.insert(v.end(), s);   
   while (_next_permutation(s.begin(), s.end(), bOrdered? NULL: &mapPos)); 

   return v;
}

In the caller StlPermutation(), if an input is considered as non-ordered when bOrdered is false, I set a position map that acts as a media for an artificial (simulated) comparison. Then, if this pMap is passed into _next_permutation(), I use comparison (*pMap)[*i]<(*pMap)[*j] for a non-ordered situation, instead of *i<*j. Now, just two condition changes there make it a dual function.

A Recursive Solution

Another way for non-ordered permutation is using recursion. Although not so efficient as iteration, it is easier to construct naturally mirroring the problem. I create a recursive function as follows, more concise than Steinhaus-Johnson-Trotter algorithm.

vector<string> RecPermutation(const char* sz)
{
   vector<string> v, v1;
   string s1;    char ch;
   int nLen = strlen(sz);      

   if (nLen==1)            // Base case: Add one-char string
      v.insert(v.end(), sz);      
   else                    // nLen > 1, need recursion
   {
      for (int i=0; i<nLen; i++)
      {
         ch = sz[i];       // Extract each char as the first
         s1 = sz;          // Copy the original string
         s1.erase(i, 1);   // Put the rest string into s1

         v1 = RecPermutation(s1.c_str()); // Recursive 

         for (int i=0; i < (int)v1.size(); i++)
         {   // Combine the extracted char with permuted strings 
            s1 = ch + v1[i];   
            v.insert(v.end(), s1);   
         }
      }
   }
      
   return v;
}

In this RecPermutation(), I strip each character aside, make a recursive call for the rest of the string, and once it returns, concatenates that character with permuted results. Obviously, this is more comprehensible than _next_permutation().

With Repeated Elements

Sometimes, we see a variation of non-ordered permutation where repeated elements are allowed. For instance, given “aab” or “aba”, the desired permutation pattern might be “aab”, “aba”, and “baa”, but from RecPermutation(), we still get six strings with each of the three appearing twice. Also, by a little modification of RecPermutation(), I achieved this method in the following function:

vector<string> RecPermutation(const char* sz, bool bRepeated)
{
   vector<string> v, v1;
   string s1;    char ch;
   int nLen = strlen(sz);      

   if (nLen==1)            // Base case: Add one-char string
      v.insert(v.end(), sz);      
   else                    // nLen > 1, need recursion
   {
      for (int i=0; i<nLen; i++)
      {
         ch = sz[i];       // Extract each char as the first

         // To exclude repeated element
         if (!bRepeated)
         {
            for (int j=0; j<i; j++)
               if (ch==sz[j]) break;

            if (j<i) continue;   // If i==j, Not a repeated one
         }

         s1 = sz;           // Copy the original string
         s1.erase(i, 1);    // Put the rest string into s1

         v1 = RecPermutation(s1.c_str(), bRepeated); // Recursive 

         for (int i=0; i < (int)v1.size(); i++)
         {
            s1 = ch + v1[i];   
            v.insert(v.end(), s1);   
         }
      }
   }

   return v;
}

As you see, I add the second parameter bAllowRepeated, and when this flag is false, I check the stripped character to skip repeated one if any. This simply enhances RecPermutation() as an alternative usage. Try to imagine altering an iteration function this way – really not easy!

Test and Comparison

Surely, you can search online for more permutation solutions. Among them, it’s worthy of mentioning this solution, created by Phillip Fuchs. There the iterative algorithm is pretty impressive and works efficiently for a non-ordered and non-repeated element list. I included his Example2 in my test program to examine an input "ijabcdefgh" as shown below:

Also, I made a comparison using the Permute.exe release build in my 2.2GHz P4 XP laptop, as shown in the following table:

Function            Parameter      Second(s)  #Permutations
-----------------------------------------------------------
_next_permutation   bOrdered=true        1         403,200       
_next_permutation   bOrdered=false       6       3,628,800
RecPermutation      bRepeated=true      45       3,628,800
RecPermutation      bRepeated=false     45       3,628,800
Philip's            example_02           5       3,628,800

As expected, the ordered _next_permutation() generates only part of permutations for the partially ascending "ijabcdefgh", while the non-ordered _next_permutation() generates all. The recursive RecPermutation() takes 45 seconds, not efficient as STL iteration (6 seconds), while Phillip’s example is a bit better than _next_permutation(). However, only the enhanced RecPermutation() excludes redundant permutations in a repeated element list, where the additional expense looks trivial.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)

Share

About the Author

Zuoliu Ding
Software Developer
United States United States
An Adjunct Faculty and Software Developer in Los Angeles and Orange County, CA
 
* Typical articles published in Dr. Dobb’s Journal and Windows Developer Magazine:

- A Silent Component Update for Internet Explorer
- Silent Application Update
- An MDI-Style Web Browser and Load Spy Monitor
- Implementing Wireless Print for WinNT/Win2K
- Multi-State Checkbox Tree Views
- A Generic Tool Tip Class
- An Easy Way to Add Tool Tips to Any MFC Control

- More from Google...

Comments and Discussions

 
Generalspeed comparisons Pinmembercycologist11-Jan-09 10:53 
GeneralNice article, but... Pinmembermzeo7715-Aug-05 13:27 
Questionhow to use it with arrays? PinmemberOri_224-Jul-04 22:19 
AnswerRe: how to use it with arrays? PinmemberZuoliu Ding26-Jul-04 9:24 
GeneralNice! PinmemberDavidCrow20-Jul-04 10:06 
GeneralRe: Nice! PinmemberZuoliu Ding21-Jul-04 8:04 
GeneralGreat PinmemberJuan Carlos Cobas14-Jul-04 23:22 
GeneralRe: Great PinmemberZuoliu Ding15-Jul-04 6:27 
Thanks for your interest and encourage.
-ZD

General General    News News    Suggestion Suggestion    Question Question    Bug Bug    Answer Answer    Joke Joke    Rant Rant    Admin Admin   

Use Ctrl+Left/Right to switch messages, Ctrl+Up/Down to switch threads, Ctrl+Shift+Left/Right to switch pages.

| Advertise | Privacy | Terms of Use | Mobile
Web01 | 2.8.141223.1 | Last Updated 15 Jul 2004
Article Copyright 2004 by Zuoliu Ding
Everything else Copyright © CodeProject, 1999-2014
Layout: fixed | fluid