A Brief Test on the Code Efficiency of CUDA and Thrust

, 27 Jun 2010 GPL3
 Rate this:
Verify the execution efficiency of a short CUDA program when using the library thrust

Introduction

I am working on numerical simulations which are always pretty time consuming jobs. Most of these jobs take lots of hours to complete, even though multi-core CPUs are commonly used. Before I can afford a cluster, how to dramatically improve the calculation efficiency on my desktop computers to save computational effort became a critical problem I am facing and dreaming to achieve.

NVIDIA CUDA seems more and more popular and potential to solve the present problem with the power released from GPU. CUDA framework provides a modified C language and with its help, my C programming experiences can be re-used to implement numerical algorithms by utilising a GPU. Whilst thrust is a C++ template library for CUDA, thrust is aimed at improving developers' development productivity; however, the code execution efficiency is also of high priority for a numerical job. Someone stated that code execution efficiency could be lost to some extent due to the extra cost from using the library thrust. To judge this precisely, I did a series of basic tests in order to explore the truth. Basically, that is the purpose of this article.

My test computer is an Intel Q6600 quad core CPU plus 3G DDR2 800M memory. Although I don't have good hard drives, marked only 5.1 in Windows 7 32 bit, I think in this test of the calculation of the summation of squares, the access to hard drives might not be significant. The graphic card used is a GeForce 9800 GTX+ with 512M GDDR3 memory. The card is shown as:

[This article can also be referred from my blog (Free your CFD), "A short test on the code efficiency of CUDA and thrust".]

Algorithm in Raw CUDA

The test case I used is solving the summation of squares of an array of integers (random numbers ranged from 0 to 9), and, as I mentioned, a GeForce 9800 GTX+ graphic card running within Windows 7 32-bit system was employed for the testing. If in plain C language, the summation could be implemented by the following loop code, which is then executed on a CPU core:

```int final_sum = 0;
for (int i = 0; i < DATA_SIZE; i++) {
final_sum += data[i] * data[i];
}```

Obviously, it is a serial computation. The code is executed in a serial stream of instructions. In order to utilise the power of CUDA, the algorithm has to be parallelised, and the more parallelisation is realised, the more potential power will be explored. With the help of my basic understanding on CUDA, I split the data into different groups and then used the equivalent number of threads on the GPU to calculate the summation of the squares of each group. Ultimately results from all the groups are added together to obtain the final result.

The algorithm designed is briefly shown in the figure:

The consecutive steps are:

1. Copy data from the CPU memory to the GPU memory.
`cudaMemcpy(gpudata, data, sizeof(int) * DATA_SIZE, cudaMemcpyHostToDevice);`
2. Totally `BLOCK_NUM` blocks are used, and in each block `THREAD_NUM` threads are produced to perform the calculation. In practice, I used `THREAD_NUM = 512`, which is the greatest allowed thread number in a block of CUDA. Thereby, the raw data are separated into `DATA_SIZE / (BLOCK_NUM * THREAD_NUM)` groups.
3. The access to the data buffer is designed as consecutive, otherwise the efficiency will be reduced.
4. Each thread does its corresponding calculation.
```shared[tid] = 0;
for (int i = bid * THREAD_NUM + tid; i < DATA_SIZE; i += BLOCK_NUM * THREAD_NUM) {
shared[tid] += num[i] * num[i];
}```
5. By using shared memory in the blocks, sub summation can be done in each block. Also, the sub summation is parallelised to achieve as high execution speed as possible. Please refer to the source code regarding the details of this part.
6. The `BLOCK_NUM` sub summation results for all the blocks are copied back to the CPU side, and they are then added together to obtain the final value.
```cudaMemcpy(&sum, result, sizeof(int) * BLOCK_NUM, cudaMemcpyDeviceToHost);

int final_sum = 0;
for (int i = 0; i < BLOCK_NUM; i++) {
final_sum += sum[i];
}```

Regarding the procedure, function `QueryPerformanceCounter` records the code execution duration, which is then used for comparison between the different implementations. Before each call of `QueryPerformanceCounter`, CUDA function `cudaThreadSynchronize()` is called to make sure that all computations on the GPU are really finished. (Please refer to the CUDA Best Practices Guide §2.1.)

More details on the raw CUDA code can be referred directly from the source code attached. Comments are also welcome.

Algorithm in Thrust

The application of the library thrust could make the CUDA code as simple as a plain C++ one. The usage of the library is also compatible with the usage of STL (Standard Template Library) of C++. For instance, the code for the calculation on GPU utilising thrust support is scratched like this:

```thrust::host_vector<int> data(DATA_SIZE);
srand(time(NULL));
thrust::generate(data.begin(), data.end(), random());

QueryPerformanceCounter(&elapsed_time_start);

thrust::device_vector<int> gpudata = data;

int final_sum = thrust::transform_reduce(gpudata.begin(), gpudata.end(),
square<int>(), 0, thrust::plus<int>());

QueryPerformanceCounter(&elapsed_time_end);

printf("sum (on GPU): %d; time: %lf\n", final_sum, elapsed_time);```

`thrust::generate` is used to generate the random data, for which the functor `random` is defined in advance. `random` was customised to generate a random integer ranged from 0 to 9.

```// define functor for
// random number ranged in [0, 9]
class random
{
public:
int operator() ()
{
return rand() % 10;
}
};```

In comparison with the random number generation without thrust, the code could however not be as elegant.

```// generate random number ranged in [0, 9]
void GenerateNumbers(int * number, int size)
{
srand(time(NULL));
for (int i = 0; i < size; i++) {
number[i] = rand() % 10;
}
}```

Similarly `square` is a transformation functor taking one argument. Please refer to the source code for its definition. `square` was defined for `__host__ __device__` and thus it can be used for both the CPU and the GPU sides.

```// define transformation f(x) -> x^2
template <typename T>
struct square
{
__host__ __device__
T operator() (T x)
{
return x * x;
}
};```

That is all for the thrust based code. Is it concise enough? Here function `QueryPerformanceCounter` also records the code duration. On the other hand, the `host_vector data` is operated on CPU to compare. Using the code below, the summation is performed by the CPU end:

```QueryPerformanceCounter(&elapsed_time_start);

final_sum = thrust::transform_reduce(data.begin(), data.end(),
square<int>(), 0, thrust::plus<int>());

QueryPerformanceCounter(&elapsed_time_end);

printf("sum (on CPU): %d; time: %lf\n", final_sum, elapsed_time);```

I also tested the performance if use `thrust::host_vector<int> data` as a plain array. This is supposed to cost more overhead, I thought, but we might be curious to know how much. The corresponding code is listed as:

```final_sum = 0;
for (int i = 0; i < DATA_SIZE; i++)
{
final_sum += data[i] * data[i];
}

printf("sum (on CPU): %d; time: %lf\n", final_sum, elapsed_time);```

The execution time was recorded to compare as well.

Test Results on GPU & CPU

The previous experiences show that GPU surpasses CPU when massive parallel computation is realised. When `DATA_SIZE` increases, the potential of GPU calculation will be gradually released. This is predictable. Moreover, do we lose efficiency when we apply thrust? I guess so, since there is extra cost brought, but do we lose much? We have to judge from the comparison results.

When `DATA_SIZE` increases from 1 M to 32 M (1 M equals to `1 * 1024 * 1024`), the results obtained are illustrated as the table:

The descriptions of the items are:

• GPU Time: Execution time of the raw CUDA code
• CPU Time: Execution time of the plain loop code running on the CPU
• GPU thrust: Execution time of the CUDA code with thrust
• CPU thrust: Execution time of the CPU code with thrust
• CPU '': Execution time of the plain loop code based on `thrust::host_vector`

The corresponding trends can be summarised as:

or compare them by the column figure:

The speedup of GPU to CPU is obvious when `DATA_SIZE` is more than 4 M. Actually with greater data size, much better performance speedup can be obtained. Interestingly, in this region, the cost of using thrust is quite small, which can even be neglected. However, on the other hand, don't use thrust on the CPU side, neither `thrust::transform_reduce` method nor a plain loop on a `thrust::host_vector`; according to the figures, the cost brought is huge. Use a plain array and a loop instead.

From the comparison figure, we found that the application of thrust not only simplifies the code of CUDA computation, but also compensates the loss of efficiency when `DATA_SIZE` is relatively small. Therefore, it is strongly recommended.

Conclusion

Based on the tests performed, apparently, by employing parallelism, GPU shows greater potential than CPU does, especially for those calculations which contain much more parallel elements. This article also found that the application of thrust does not reduce the code execution efficiency on the GPU side, but brings dramatical negative changes in the efficiency on the CPU side. Consequently, it is better using plain arrays for CPU calculations.

In conclusion, the usage of thrust feels pretty good, because it improves the code efficiency, and with employing thrust, the CUDA code can be so concise and rapidly developed.

Code Instruction

The code file thrustExample.cu, contained in the zip package, includes the algorithms for the raw CUDA as well as thrust on both GPU and CPU. Note that the calculation execution has to be repeated enough times in order to extract average values for a practical benchmark test; for clarity and simplification, I didn't include this feature in the code attached, but it is easy to add.

The code was built and tested in Windows 7 32 bit plus Visual Studio 2008, CUDA 3.0 and the latest thrust 1.2. One also needs a NVIDIA graphic card as well as CUDA toolkit to run the programs. For instructions on installing CUDA, please refer to its official site CUDA Zone.

History

• 25/05/2010: The first version of the present article was released.
• 26/05/2010: Source code packages are attached and the article is also updated accordingly.
• 05/06/2010: The two packages are incorporated together and the code is also improved according to recent readers' comments. The article is also updated accordingly, especially the algorithms implemented are described more detailedly.
• 27/06/2010: The code was modified with the help of the recent comments. In particular, the necessary call of `cudaThreadSynchronize()` was added. Meanwhile, the presentation of the test results is also polished further to be clear and elegant.

Share

Engineer
United States

Working on numerical modelling on electromagnetic, thermal and fluid dynamics etc in power and energy field.

Programming in C/C++ from Visual C++ 6.0 and in C#/VB.NET since Visual Studio 2003. Experienced in MATLAB, Python and Fortran etc. Meanwhile I am also a Linux fan.

Happy to exchange ideas!

 First Prev Next
 thanks Member 10914971 22-Oct-14 8:10
 My Results Member 10060784 19-May-13 7:17
 What you really measure Mario Mulansky 10-Jun-10 1:13
 Re: What you really measure Wayne Wood 13-Jun-10 0:10
 Re: What you really measure Mario Mulansky 13-Jun-10 3:13
 Re: What you really measure El Corazon 14-Jun-10 17:35
 Re: What you really measure Wayne Wood 16-Jun-10 9:23
 conclusion epitalon 2-Jun-10 23:52
 Re: conclusion Wayne Wood 7-Jun-10 12:46
 Re: conclusion epitalon 8-Jun-10 1:17
 Re: conclusion Wayne Wood 8-Jun-10 3:28
 Re: conclusion El Corazon 8-Jun-10 14:42
 Re: conclusion Wayne Wood 9-Jun-10 1:21
 Re: conclusion El Corazon 10-Jun-10 11:27
 Re: conclusion Wayne Wood 12-Jun-10 8:24
 excellent article El Corazon 29-May-10 12:25
 Re: excellent article Wayne Wood 29-May-10 13:10
 Re: excellent article El Corazon 29-May-10 13:56
 Re: excellent article Wayne Wood 29-May-10 23:35
 Re: excellent article El Corazon 30-May-10 11:16
 Wayne Wood wrote:Thanks a lot   Glad to help, plus I am helping myself to a nice start on benchmarking Thrust templates for an upcoming project. Now I just need to throw a nv285 at it and see what happens. _________________________ John Andrew Holmes "It is well to remember that the entire universe, with one trifling exception, is composed of others."   Shhhhh.... I am not really here. I am a figment of your imagination.... I am still in my cave so this must be an illusion....
 Please the same Computation with CUDA Kevin Drzycimski 26-May-10 7:35
 Re: Please the same Computation with CUDA Wayne Wood 26-May-10 12:33
 Re: Please the same Computation with CUDA Kevin Drzycimski 31-May-10 4:07
 Question BryanWilkins 26-May-10 4:47
 Re: Question Wayne Wood 26-May-10 5:05
 Re: Question BryanWilkins 27-May-10 7:06
 What does the same "raw" CUDA code look like? Aescleal 26-May-10 2:58
 Re: What does the same "raw" CUDA code look like? Wayne Wood 26-May-10 3:33
 Re: What does the same "raw" CUDA code look like? Aescleal 26-May-10 5:31
 Re: What does the same "raw" CUDA code look like? Wayne Wood 26-May-10 12:27
 Re: What does the same "raw" CUDA code look like? El Corazon 29-May-10 12:18
 Message Removed _beauw_ 25-May-10 13:35
 Re: Good article, but one comment... Wayne Wood 25-May-10 23:53
 Last Visit: 31-Dec-99 19:00     Last Update: 20-Dec-14 12:08 Refresh 1