12,446,146 members (25,527 online)
alternative version

184.6K views
89 bookmarked
Posted

# Canny Edge Detection in C#

, 23 Apr 2012 CPOL
 Rate this:
Implementation of canny Edge Detection Algorithm

## Introduction

The purpose of edge detection in general is to significantly reduce the amount of data in an image, while preserving the structural properties to be used for further image processing. Several algorithms exists, and this worksheet focuses on a particular one developed by John F. Canny (JFC) in 1986. Even though it is quite old, it has become one of the standard edge detection methods and it is still used in research.

The aim of JFC was to develop an algorithm that is optimal with regards to the following criteria:

1. Detection: The probability of detecting real edge points should be maximized while the probability of falsely detecting non-edge points should be minimized. This corresponds to maximizing the signal-to-noise ratio.

2. Localization: The detected edges should be as close as possible to the real edges.

3. Number of responses: One real edge should not result in more than one detected edge (one can argue that this is implicitly included in the first requirement).

With Canny’s mathematical formulation of these criteria, Canny’s Edge Detector is optimal for a certain class of edges (known as step edges). A C# implementation of the algorithm is presented here.

## Background

The readers are advised to do more research on canny edge detection method for detailed theory.

## Using the code

The Canny Edge Detection Algorithm

The algorithm runs in 5 separate steps:

1. Smoothing: Blurring of the image to remove noise.

```private void GenerateGaussianKernel(int N, float S ,out int Weight)
{

float Sigma = S ;
float pi;
pi = (float)Math.PI;
int i, j;
int SizeofKernel=N;

float [,] Kernel = new float [N,N];
GaussianKernel = new int [N,N];
float[,] OP = new float[N, N];
float D1,D2;

D1= 1/(2*pi*Sigma*Sigma);
D2= 2*Sigma*Sigma;

float min=1000;

for (i = -SizeofKernel / 2; i <= SizeofKernel / 2; i++)
{
for (j = -SizeofKernel / 2; j <= SizeofKernel / 2; j++)
{
Kernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j] = ((1 / D1) * (float)Math.Exp(-(i * i + j * j) / D2));
if (Kernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j] < min)
min = Kernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j];

}
}
int mult = (int)(1 / min);
int sum = 0;
if ((min > 0) && (min < 1))
{

for (i = -SizeofKernel / 2; i <= SizeofKernel / 2; i++)
{
for (j = -SizeofKernel / 2; j <= SizeofKernel / 2; j++)
{
Kernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j] = (float)Math.Round(Kernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j] * mult, 0);
GaussianKernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j] = (int)Kernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j];
sum = sum + GaussianKernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j];
}

}

}
else
{
sum = 0;
for (i = -SizeofKernel / 2; i <= SizeofKernel / 2; i++)
{
for (j = -SizeofKernel / 2; j <= SizeofKernel / 2; j++)
{
Kernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j] = (float)Math.Round(Kernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j] , 0);
GaussianKernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j] = (int)Kernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j];
sum = sum + GaussianKernel[SizeofKernel / 2 + i, SizeofKernel / 2 + j];
}

}

}
//Normalizing kernel Weight
Weight= sum;

return;
}```

Following subroutine removes noise by Gaussian Filtering

```private int[,] GaussianFilter(int[,] Data)
{
GenerateGaussianKernel(KernelSize, Sigma,out KernelWeight);

int[,] Output = new int[Width, Height];
int i, j,k,l;
int Limit = KernelSize /2;

float Sum=0;

Output = Data; // Removes Unwanted Data Omission due to kernel bias while convolution

for (i = Limit; i <= ((Width - 1) - Limit); i++)
{
for (j = Limit; j <= ((Height - 1) - Limit); j++)
{
Sum = 0;
for (k = -Limit; k <= Limit; k++)
{

for (l = -Limit; l <= Limit; l++)
{
Sum = Sum + ((float)Data[i + k, j + l] * GaussianKernel [Limit + k, Limit + l]);

}
}
Output[i, j] = (int)(Math.Round(Sum/ (float)KernelWeight));
}

}

return Output;
}```

2. Finding gradients: The edges should be marked where the gradients of the image haslarge magnitudes.

Sobel X and Y Masks are used to generate X & Y Gradients of Image; next function implements differentiation using sobel Filter Mask

```private float[,] Differentiate(int[,] Data, int[,] Filter)
{
int i, j,k,l, Fh, Fw;

Fw = Filter.GetLength(0);
Fh = Filter.GetLength(1);
float sum = 0;
float[,] Output = new float[Width, Height];

for (i = Fw / 2; i <= (Width - Fw / 2) - 1; i++)
{
for (j = Fh / 2; j <= (Height  - Fh / 2) - 1; j++)
{
sum=0;
for(k=-Fw/2; k<=Fw/2; k++)
{
for(l=-Fh/2; l<=Fh/2; l++)
{
sum=sum + Data[i+k,j+l]*Filter[Fw/2+k,Fh/2+l];

}
}
Output[i,j]=sum;

}

}
return Output;

}```

3. Non-maximum suppression: Only local maxima should be marked as edges.

We find gradient direction and using these direction we perform non maxima suppression (Read “Digital Image Processing- by R Gonzales-Pearson Education)

```// Perform Non maximum suppression:

for (i = 0; i <= (Width - 1); i++)
{
for (j = 0; j <= (Height - 1); j++)
{
}
}

int Limit = KernelSize / 2;
int r, c;
float Tangent;

for (i = Limit; i <= (Width - Limit) - 1; i++)
{
for (j = Limit; j <= (Height - Limit) - 1; j++)
{

if (DerivativeX[i, j] == 0)
Tangent = 90F;
else
Tangent = (float)(Math.Atan(DerivativeY[i, j] / DerivativeX[i, j]) * 180 / Math.PI); //rad to degree

//Horizontal Edge
if (((-22.5 < Tangent) && (Tangent <= 22.5)) || ((157.5 < Tangent) && (Tangent <= -157.5)))
{
NonMax[i, j] = 0;
}

//Vertical Edge
if (((-112.5 < Tangent) && (Tangent <= -67.5)) || ((67.5 < Tangent) && (Tangent <= 112.5)))
{
NonMax[i, j] = 0;
}

//+45 Degree Edge
if (((-67.5 < Tangent) && (Tangent <= -22.5)) || ((112.5 < Tangent) && (Tangent <= 157.5)))
{
NonMax[i, j] = 0;
}

//-45 Degree Edge
if (((-157.5 < Tangent) && (Tangent <= -112.5)) || ((67.5 < Tangent) && (Tangent <= 22.5)))
{
NonMax[i, j] = 0;
}

}
}
```

4.Double thresholding: Potential edges are determined by thresholding.

5.Edge tracking by hysteresis: Final edges are determined by suppressing all edges that are not connected to a very certain (strong) edge.

```private void HysterisisThresholding(int[,] Edges)
{

int i, j;
int Limit= KernelSize/2;

for (i = Limit; i <= (Width - 1) - Limit; i++)
for (j = Limit; j <= (Height - 1) - Limit; j++)
{
if (Edges[i, j] == 1)
{
EdgeMap[i, j] = 1;

}

}

for (i = Limit; i <= (Width - 1) - Limit; i++)
{
for (j = Limit; j <= (Height  - 1) - Limit; j++)
{
if (Edges[i, j] == 1)
{
EdgeMap[i, j] = 1;
Travers(i, j);
VisitedMap[i, j] = 1;
}
}
}

return;
}

//Recursive Procedure
private void Travers(int X, int Y)
{

if (VisitedMap[X, Y] == 1)
{
return;
}

//1
if (EdgePoints[X + 1, Y] == 2)
{
EdgeMap[X + 1, Y] = 1;
VisitedMap[X + 1, Y] = 1;
Travers(X + 1, Y);
return;
}
//2
if (EdgePoints[X + 1, Y - 1] == 2)
{
EdgeMap[X + 1, Y - 1] = 1;
VisitedMap[X + 1, Y - 1] = 1;
Travers(X + 1, Y - 1);
return;
}

//3

if (EdgePoints[X, Y - 1] == 2)
{
EdgeMap[X , Y - 1] = 1;
VisitedMap[X , Y - 1] = 1;
Travers(X , Y - 1);
return;
}

//4

if (EdgePoints[X - 1, Y - 1] == 2)
{
EdgeMap[X - 1, Y - 1] = 1;
VisitedMap[X - 1, Y - 1] = 1;
Travers(X - 1, Y - 1);
return;
}
//5
if (EdgePoints[X - 1, Y] == 2)
{
EdgeMap[X - 1, Y ] = 1;
VisitedMap[X - 1, Y ] = 1;
Travers(X - 1, Y );
return;
}
//6
if (EdgePoints[X - 1, Y + 1] == 2)
{
EdgeMap[X - 1, Y + 1] = 1;
VisitedMap[X - 1, Y + 1] = 1;
Travers(X - 1, Y + 1);
return;
}
//7
if (EdgePoints[X, Y + 1] == 2)
{
EdgeMap[X , Y + 1] = 1;
VisitedMap[X, Y + 1] = 1;
Travers(X , Y + 1);
return;
}
//8

if (EdgePoints[X + 1, Y + 1] == 2)
{
EdgeMap[X + 1, Y + 1] = 1;
VisitedMap[X + 1, Y + 1] = 1;
Travers(X + 1, Y + 1);
return;
}

//VisitedMap[X, Y] = 1;
return;
}

//Canny Class Ends
}
```

This is performed by a recursive function which performs double thresholding by two thresholds High Threshold(TH) and Low Threshold (TL) and 8-connectivity analysis

## Points of Interest

Please refer to "Digital Image Processing" by Gonzalez & woods, Pearson Education

## You may also be interested in...

 Pro Pro

 View All Threads First Prev Next
 code of canny jayshri dhar1-Feb-12 6:06 jayshri dhar 1-Feb-12 6:06
 Re: code of canny Dr. Vinayak Ashok Bharadi1-Feb-12 18:36 Dr. Vinayak Ashok Bharadi 1-Feb-12 18:36
 Last Visit: 31-Dec-99 18:00     Last Update: 24-Aug-16 10:10 Refresh 1

Use Ctrl+Left/Right to switch messages, Ctrl+Up/Down to switch threads, Ctrl+Shift+Left/Right to switch pages.

Web02 | 2.8.160811.3 | Last Updated 24 Apr 2012