12,070,942 members (65,513 online)
Rate this:
See more:
I have some code in Matlab which need to be converted to vb or c# but I didn't have any experience on matlab. So if anyone can do this, please help me.

This is the code in matlab:
```case ('BCC')
switch orientation;
% Input oriented;
case ('io')
Z = zeros(n,n+m+s+1);

% Objective function of the BCC model: min(0*lambda - epsilon*(s+ + s-) + theta);
f = [zeros(1,n) -epsilon*ones(1,s+m) 1];

lblambda = zeros(n,1);                % Lower bounds for (n) lambdas;
lboutput = zeros(s,1);                % Lower bounds for (s) outputs;
lbinput = zeros(m,1);                 % Lower bounds for (m) inputs ;
lb = [lblambda; lboutput; lbinput];   % Lower bounds for lambdas, outputs (s+) and inputs (s-);
for j=1:n
Aeq = [Y', -eye(s,s), zeros(s,m+1);
-X', zeros(m,s), -eye(m,m) X(j,:)';
ones(1,n), zeros(1,s), zeros(1,m+1)];
beq = [Y(j,:)';zeros(m,1);1];
z = linprog(f,[],[],Aeq,beq,lb);
Z(j,:) = z;
end
Z

% Output oriented;
case ('oo')
Z = zeros(n,n+m+s+1);

% Objective function of the BCC_oo model: max(0*lambda + epsilon*(s+ + s-) + theta);
f = -[zeros(1,n), epsilon*ones(1,s+m), 1];

lblambda = zeros(n,1);                % Lower bounds for (n) lambdas;
lboutput = zeros(s,1);                % Lower bounds for (s) outputs;
lbinput = zeros(m,1);                 % Lower bounds for (m) inputs ;
lb = [lblambda; lboutput; lbinput];   % Lower bounds for lambdas, outputs (s+) and inputs (s-);
for j=1:n
Aeq = [-Y', eye(s,s), zeros(s,m), Y(j,:)';
X', zeros(m,s), eye(m,m), zeros(m,1);
ones(1,n), zeros(1,s+m+1)];
beq = [zeros(s,1);X(j,:)';1];
z = linprog(f,[],[],Aeq,beq,lb);
Z(j,:) = z;
end
Z

end```

Thanks for help!
Posted 22-Nov-10 6:08am
jack_th1.3K

Rate this:

## Solution 2

```function [bank]=loadthem(filename)

for (i=1:4)
end```
Rate this:

## Solution 1

Nobody is going to write your code for you. If you want to hire someone, go over to RentACoder.com. Warning! You get what you pay for.

If you want to LEARN to write your own code, start by learning the language.
jack_th 23-Nov-10 2:36am

Oh! Thank you. I 'll try by myselft first.
Rate this:

## Solution 3

for (i=1:4)
end

Top Experts
Last 24hrsThis month
 Dave Kreskowiak 230 OriginalGriff 228 F-ES Sitecore 180 Richard MacCutchan 155 Sascha Lefèvre 110
 Dave Kreskowiak 2,276 OriginalGriff 1,654 Richard MacCutchan 1,535 CHill60 1,179 CPallini 1,122