Click here to Skip to main content
15,884,778 members
Articles / Programming Languages / C#

Image Recognition with Neural Networks

Rate me:
Please Sign up or sign in to vote.
4.82/5 (89 votes)
30 Oct 2007CPOL4 min read 948.1K   46.2K   286  
This article contains a brief description of BackPropagation Artificial Neural Network and its implementation for Image Recognition
#region Copyright (c), Some Rights Reserved
/*##########################################################################
 * 
 * BP3Layer.cs
 * -------------------------------------------------------------------------
 * By
 * Murat FIRAT, June 2007
 * 
 * -------------------------------------------------------------------------
 * Description:
 * BP3Layer.cs Implements Three Layer Backpropagation Neural Network
 * 
 * -------------------------------------------------------------------------
 * Notes:
 * If training process takes too long, modify (mostly increase) learning rate 
 * and initial weight.
 * 
 * To modify initial weight, change x(0<x<1) and y(0<y<100) in the following
 * code segment(in InitializeNetwork(..) function):
 * 
 * PreInputLayer[i].Weights[j] = x +((double)rand.Next(0, y) / 100);                  
 * InputLayer[i].Weights[j] = x + ((double)rand.Next(0, y) / 100);
 * HiddenLayer[i].Weights[j] = x + ((double)rand.Next(0, y) / 100);
 * 
 * -------------------------------------------------------------------------
 ###########################################################################*/
#endregion

using System;
using System.Collections.Generic;
using System.Text;

namespace BPSimplified.Lib
{
    [Serializable]
    class BP3Layer<T> : IBackPropagation<T> where T : IComparable<T>
    {
        private int PreInputNum;
        private int InputNum;
        private int HiddenNum;
        private int OutputNum;

        private PreInput[] PreInputLayer;
        private Input[] InputLayer;
        private Hidden[] HiddenLayer;
        private Output<T>[] OutputLayer;

        private double learningRate = 0.2;
                
        public BP3Layer(int preInputNum, int inputNum, int hiddenNum, int outputNum)
        {
            PreInputNum = preInputNum;
            InputNum = inputNum;
            HiddenNum = hiddenNum;
            OutputNum = outputNum;

            PreInputLayer = new PreInput[PreInputNum];
            InputLayer = new Input[InputNum];
            HiddenLayer = new Hidden[HiddenNum];
            OutputLayer = new Output<T>[OutputNum];          
        }

        #region IBackPropagation<T> Members

        public void BackPropagate()
        {
            int i, j;
            double total;

            //Fix Hidden Layer's Error
            for (i = 0; i < HiddenNum; i++)
            {
                total = 0.0;
                for (j = 0; j < OutputNum; j++)
                {
                    total += HiddenLayer[i].Weights[j] * OutputLayer[j].Error;
                }
                HiddenLayer[i].Error = total;
            }

            //Fix Input Layer's Error
            for (i = 0; i < InputNum; i++)
            {
                total = 0.0;
                for (j = 0; j < HiddenNum; j++)
                {
                    total += InputLayer[i].Weights[j] * HiddenLayer[j].Error;
                }
                InputLayer[i].Error = total;
            }

            //Update The First Layer's Weights
            for (i = 0; i < InputNum; i++)
            {
                for (j = 0; j < PreInputNum; j++)
                {
                    PreInputLayer[j].Weights[i] +=
                        learningRate * InputLayer[i].Error * PreInputLayer[j].Value;
                }
            }

            //Update The Second Layer's Weights
            for (i = 0; i < HiddenNum; i++)
            {
                for (j = 0; j < InputNum; j++)
                {
                    InputLayer[j].Weights[i] +=
                        learningRate * HiddenLayer[i].Error * InputLayer[j].Output;
                }
            }

            //Update The Third Layer's Weights
            for (i = 0; i < OutputNum; i++)
            {
                for (j = 0; j < HiddenNum; j++)
                {
                    HiddenLayer[j].Weights[i] +=
                        learningRate * OutputLayer[i].Error * HiddenLayer[j].Output;
                }
            }
        }

        public double F(double x)
        {
            return (1 / (1 + Math.Exp(-x)));
        }

        public void ForwardPropagate(double[] pattern, T output)
        {
            int i, j;
            double total;

            //Apply input to the network
            for (i = 0; i < PreInputNum; i++)
            {
                PreInputLayer[i].Value = pattern[i];
            }

            //Calculate The First(Input) Layer's Inputs and Outputs
            for (i = 0; i < InputNum; i++)
            {
                total = 0.0;
                for (j = 0; j < PreInputNum; j++)
                {
                    total += PreInputLayer[j].Value * PreInputLayer[j].Weights[i];
                }
                InputLayer[i].InputSum = total;
                InputLayer[i].Output = F(total);
            }

            //Calculate The Second(Hidden) Layer's Inputs and Outputs
            for (i = 0; i < HiddenNum; i++)
            {
                total = 0.0;
                for (j = 0; j < InputNum; j++)
                {
                    total += InputLayer[j].Output * InputLayer[j].Weights[i];
                }

                HiddenLayer[i].InputSum = total;
                HiddenLayer[i].Output = F(total);
            }

            //Calculate The Third(Output) Layer's Inputs, Outputs, Targets and Errors
            for (i = 0; i < OutputNum; i++)
            {
                total = 0.0;
                for (j = 0; j < HiddenNum; j++)
                {
                    total += HiddenLayer[j].Output * HiddenLayer[j].Weights[i];
                }

                OutputLayer[i].InputSum = total;
                OutputLayer[i].output = F(total);
                OutputLayer[i].Target = OutputLayer[i].Value.CompareTo(output) == 0 ? 1.0 : 0.0;
                OutputLayer[i].Error = (OutputLayer[i].Target - OutputLayer[i].output) * (OutputLayer[i].output) * (1 - OutputLayer[i].output);
            }
        }

        public double GetError()
        {
            double total = 0.0;
            for (int j = 0; j < OutputNum; j++)
            {
                total += Math.Pow((OutputLayer[j].Target - OutputLayer[j].output), 2) / 2;
            }
            return total;
        }

        public void InitializeNetwork(Dictionary<T, double[]> TrainingSet)
        {
            int i, j;
            Random rand = new Random();
            for (i = 0; i < PreInputNum; i++)
            {
                PreInputLayer[i].Weights = new double[InputNum];
                for (j = 0; j < InputNum; j++)
                {
                    PreInputLayer[i].Weights[j] = 0.01 + ((double)rand.Next(0, 8) / 100);
                }
            }

            for (i = 0; i < InputNum; i++)
            {
                InputLayer[i].Weights = new double[HiddenNum];
                for (j = 0; j < HiddenNum; j++)
                {
                    InputLayer[i].Weights[j] = 0.01 + ((double)rand.Next(0, 8) / 100);
                }
            }

            for (i = 0; i < HiddenNum; i++)
            {
                HiddenLayer[i].Weights = new double[OutputNum];
                for (j = 0; j < OutputNum; j++)
                {
                    HiddenLayer[i].Weights[j] = 0.01 + ((double)rand.Next(0, 8) / 100);
                }
            }

            int k = 0;
            foreach (KeyValuePair<T, double[]> p in TrainingSet)
            {
                OutputLayer[k++].Value = p.Key;
            }
        }

        public void Recognize(double[] Input, ref T MatchedHigh, ref double OutputValueHight, ref T MatchedLow, ref double OutputValueLow)
        {
            int i, j;
            double total = 0.0;
            double max = -1;

            //Apply input to the network
            for (i = 0; i < PreInputNum; i++)
            {
                PreInputLayer[i].Value = Input[i];
            }

            //Calculate Input Layer's Inputs and Outputs
            for (i = 0; i < InputNum; i++)
            {
                total = 0.0;
                for (j = 0; j < PreInputNum; j++)
                {
                    total += PreInputLayer[j].Value * PreInputLayer[j].Weights[i];
                }
                InputLayer[i].InputSum = total;
                InputLayer[i].Output = F(total);
            }

            //Calculate Hidden Layer's Inputs and Outputs
            for (i = 0; i < HiddenNum; i++)
            {
                total = 0.0;
                for (j = 0; j < InputNum; j++)
                {
                    total += InputLayer[j].Output * InputLayer[j].Weights[i];
                }

                HiddenLayer[i].InputSum = total;
                HiddenLayer[i].Output = F(total);
            }

            //Find the [Two] Highest Outputs
            for (i = 0; i < OutputNum; i++)
            {
                total = 0.0;
                for (j = 0; j < HiddenNum; j++)
                {
                    total += HiddenLayer[j].Output * HiddenLayer[j].Weights[i];
                }
                OutputLayer[i].InputSum = total;
                OutputLayer[i].output = F(total);
                if (OutputLayer[i].output > max)
                {
                    MatchedLow = MatchedHigh;
                    OutputValueLow = max;
                    max = OutputLayer[i].output;
                    MatchedHigh = OutputLayer[i].Value;
                    OutputValueHight = max;
                }
            }
        }

        #endregion

        public double LearningRate
        {
            get { return learningRate; }
            set { learningRate = value; }
        }
    }
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Software Developer (Senior)
Turkey Turkey
Has BS degree on computer science, working as software engineer in istanbul.

Comments and Discussions