Click here to Skip to main content
Click here to Skip to main content
 
Add your own
alternative version
Go to top

DSGraphEdit: A Reasonable Facsimile of Microsoft's GraphEdit in .NET

, 19 Dec 2007
A library for adding DirectShow GraphEdit-like abilities to .NET applications.
dsgrapheditdemo.zip
WeifenLuo.WinFormsUI.Docking.dll
DaggerLib.dll
DaggerLib.DSGraphEdit.dll
DaggerLib.UI.Windows.dll
DirectShowLib-2005.dll
DSGraphEdit.exe
MediaFoundation.dll
dsgrapheditsrc.zip
DSGraphEdit
bin
Release
DSIcon.ico
Properties
Settings.settings
Referenced Libs
WeifenLuo.WinFormsUI.Docking.dll
RemoteGraphTile.jpg
DaggerLib
bin
Release
Core
Interfaces
Properties
SetGeneric
UI
DaggerLib.DSGraphEdit
DMOParameterControls
DSFilterTreeView
DSGraphEditControls
lib
Properties
ReferencedLibs
DirectShowLib-2005.dll
MediaFoundation.dll
DaggerLib.UI.Windows
AStar
bin
Debug
DaggerPropertyGrid
PropertyGridEx
Properties
using System;
using System.Windows.Forms;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Collections.Generic;
using System.Text;

using DaggerLib.Core;
using DaggerLib.Interfaces;
using DaggerLib.UI.AStar;

namespace DaggerLib.UI.Windows
{
    public class DaggerNoodle : IDaggerNoodle
    {
        private DaggerOutputPin _outputPin;
        private DaggerInputPin _inputPin;

        private Point _outputPoint;
        private Point _inputPoint;

        public GraphicsPath path;

        public DaggerNoodle(DaggerOutputPin output, DaggerInputPin input)
        {
            _inputPin = input;
            _outputPin = output;
            UpdateNoodlePath(NoodleStyle.Bezier, null);
        }

        public DaggerOutputPin OutputPin
        {
            get
            {
                return _outputPin;
            }
        }

        public DaggerInputPin InputPin
        {
            get
            {
                return _inputPin;
            }
        }

        public Point InputPoint
        {
            get
            {
                return _inputPoint;
            }
        }

        public Point OutputPoint
        {
            get
            {
                return _outputPoint;
            }
        }

        public void UpdateNoodlePath(NoodleStyle style, object helper)
        {
            if (path != null)
            {
                path.Dispose();
            }

            path = new GraphicsPath();

            //recalculate the two points relative to the parent container
            //and adjust for scrollbar positions
            if (_outputPin.ParentNode != null)
            {
                if (_outputPin.ParentUIGraph != null)
                {
                    _outputPoint = (_outputPin.ParentUIGraph as DaggerUIGraph).PointToClient((_outputPin.ParentNode.UINode as DaggerUINode).PointToScreen((_outputPin.PinUIElements as PinUI).PinLocation));
                    _outputPoint.X += (_outputPin.ParentNode.UINode.PinSize / 2) - (_outputPin.ParentUIGraph as DaggerUIGraph).AutoScrollPosition.X;
                    _outputPoint.Y += (_outputPin.ParentNode.UINode.PinSize / 2) - (_outputPin.ParentUIGraph as DaggerUIGraph).AutoScrollPosition.Y;
                }
            }
            else
            {
                //it's an imported pin
                _outputPoint = (_outputPin.PinUIElements as PinUI).PinLocation;
                if (_outputPin.ParentUIGraph != null)
                {
                    _outputPoint.X += (_outputPin.ParentUIGraph.PinSize / 2);
                    _outputPoint.Y += (_outputPin.ParentUIGraph.PinSize / 2);
                }
            }

            if (_inputPin.ParentNode != null)
            {
                if (_inputPin.ParentUIGraph != null)
                {
                    _inputPoint = (_inputPin.ParentUIGraph as DaggerUIGraph).PointToClient((_inputPin.ParentNode.UINode as DaggerUINode).PointToScreen((_inputPin.PinUIElements as PinUI).PinLocation));
                    _inputPoint.X += (_inputPin.ParentNode.UINode.PinSize / 2) - (_inputPin.ParentUIGraph as DaggerUIGraph).AutoScrollPosition.X;
                    _inputPoint.Y += (_inputPin.ParentNode.UINode.PinSize / 2) - (_inputPin.ParentUIGraph as DaggerUIGraph).AutoScrollPosition.Y;
                }
            }
            else
            {
                //it's an exported pin
                _inputPoint = (_inputPin.PinUIElements as PinUI).PinLocation;
                if (_inputPin.ParentUIGraph != null)
                {
                    _inputPoint.X += (_inputPin.ParentUIGraph.PinSize / 2);
                    _inputPoint.Y += (_inputPin.ParentUIGraph.PinSize / 2);
                }
            }

            switch (style)
            {
                case NoodleStyle.Bezier:
                    _bezierStyle();
                    break;
                case NoodleStyle.Lines:
                    _lineStyle();
                    break;
                case NoodleStyle.CircuitBoardFine:
                case NoodleStyle.CircuitBoardCoarse:
                    {
                        AstarHelper bshelper = (AstarHelper)helper;
                        path.AddLines(_pathFinder(bshelper.grid, bshelper.pathCost, bshelper.grain).ToArray());                        
                    }
                    break;
                case NoodleStyle.Ramen:
                    {
                        AstarHelper bshelper = (AstarHelper)helper;
                        path.AddCurve(_pathFinder(bshelper.grid, bshelper.pathCost, bshelper.grain).ToArray(),0.75f);
                        path.Flatten();
                    }
                    break;
                case NoodleStyle.BendyStraws:
                    {
                        AstarHelper bshelper = (AstarHelper)helper;
                        // traverse the points of the pathfinder and create 90 degree ellipses
                        List<Point> points = _pathFinder(bshelper.grid, bshelper.pathCost, bshelper.grain);
                        int pcount = 0;
                        Point lastpoint = points[0];
                        while (pcount < points.Count - 2)
                        {
                            float yi = 0, xi = 0;
                            float m1 = _slope(lastpoint, points[pcount + 1], ref yi, ref xi);
                            float m2 = _slope(points[pcount + 1], points[pcount + 2], ref yi, ref xi);
                            if (m1 != m2)
                            {
                                // an angle

                                // get the mid point of seg2 and create bezier curve
                                Point mpoint = (m2 == 0) ? _hmidPoint(points[pcount + 1], points[pcount + 2]) : _vmidPoint(points[pcount + 1], points[pcount + 2]);
                                path.AddBezier(lastpoint, points[pcount + 1], points[pcount + 1], mpoint);
                                lastpoint = mpoint;
                                pcount++;
                            }
                            else
                            {
                                // strait line
                                pcount++;
                            }
                        }
                        
                        // add the last line
                        path.AddLine(lastpoint, points[points.Count - 1]);
                        path.Flatten();
                    }
                    break;
                default:
                    break;
            }          
        }

        /// <summary>
        /// Disconnects the pins that comprise this Noodle
        /// </summary>
        /// <returns>true if succeded</returns>
        public bool Disconnect()
        {
            return _outputPin.Disconnect(_inputPin,false);
        }

        private List<Point> _pathFinder(DaggerLib.UI.AStar.AStar grid,int pathCost,int grain)
        {
            Point autoScrollPos = (_inputPin.ParentUIGraph as DaggerUIGraph).AutoScrollPosition;

            int ix = (int)((float)_inputPoint.X / (float)grain);
            int iy = (int)((float)_inputPoint.Y / (float)grain);

            int ox = (int)((float)_outputPoint.X / (float)grain);
            int oy = (int)((float)_outputPoint.Y / (float)grain);

            // adjust horizontal pin positions to ensure they're not inside the node's grained rectangle
            if (_inputPin.ParentNode != null)
            {
                ix = (int)((float)(_inputPin.ParentNode.UINode.Left - autoScrollPos.X) / (float)grain);
            }
            else
            {
                ix--;
            }
            if (_outputPin.ParentNode != null)
            {
                ox = (int)((float)((_outputPin.ParentNode.UINode as DaggerUINode).Right - autoScrollPos.X) / (float)grain);
            }
            else
            {
                ox++;
            }

            // traverse the grid horizontally until start and end points have a clear line of sight
            int off = 0;
            Cell c = grid[ox + off,oy];
            while((ox + off) < grid.Size.Width)
            {
                if (c.CellCost < 500) break;
                off++;
                c = grid[ox + off, oy];
            }
            ox += off;

            off = 0;
            c = grid[ix - off, iy];
            while ((ix + off) > -1)
            {
                if (c.CellCost < 500) break;
                off--;
                c = grid[ix + off, iy];
            }
            ix += off;

            grid.Start = new Rectangle(ox, oy, 0, 0);
            grid.Goal = new Rectangle(ix, iy, 0, 0);

            int iCount = 0;
            Point[] p = null;
            try
            {
                p = grid.DeterminePath(0, ref iCount);
            }
            catch (Exception ex)
            {
                // AStar failed, just add a line
                List<Point> points = new List<Point>();
                points.Add(_outputPoint);
                points.Add(_inputPoint);
                return points;
            }

            if (p == null || p.Length < 3)
            {
                List<Point> points = new List<Point>();
                points.Add(_outputPoint);
                points.Add(_inputPoint);

                //make sure ix stays within the confines of the grid
                ix = Math.Max(0, ix);

                // increment the cost of the path
                grid.IncLine(new Point(ox, oy), new Point(ix, iy), pathCost);

                return points;
            }
            else
            {                
                List<Point> points = new List<Point>();

                // get the grain offset to properly build the line segments connecting the pins
                //int grainXOffset = _outputPoint.X - ((int)((float)_outputPoint.X / (float)grain) * grain);
                //int grainYOffset = _outputPoint.Y - ((int)((float)_outputPoint.Y / (float)grain) * grain);

                // add output pin point
                points.Add(_outputPoint);

                // build the initial path
                for (int i = 0; i < p.Length; i++)
                {
                    points.Add(new Point(p[i].X * grain, p[i].Y * grain));
                }

                // add input pin point
                points.Add(_inputPoint);

                // cull identical points
                for (int i = points.Count - 1; i > 0; i--)
                {
                    if (points[i].X == points[i - 1].X && points[i].Y == points[i - 1].Y)
                    {
                        points.Remove(points[i]);
                    }
                }

                // coerce the first and last points to be flush with the pins
                if (points[1].Y == points[2].Y)
                {
                    // it "L"s in
                    points[1] = new Point(points[1].X, points[0].Y);
                    points[2] = new Point(points[2].X, points[0].Y);
                }
                else
                {
                    points[1] = new Point(points[1].X, points[0].Y);
                }
                if (points[points.Count - 2].Y == points[points.Count - 3].Y)
                {
                    // it "L"s in
                    points[points.Count - 2] = new Point(points[points.Count - 2].X, points[points.Count - 1].Y);
                    points[points.Count - 3] = new Point(points[points.Count - 3].X, points[points.Count - 1].Y);
                }
                else
                {
                    points[points.Count - 2] = new Point(points[points.Count - 2].X, points[points.Count - 1].Y);
                }

                // increment the cost of this path in the grid
                for (int i = 0; i < points.Count - 1; i++)
                {
                    grid.IncLine(new Point(points[i].X / grain, points[i].Y / grain), new Point(points[i + 1].X / grain, points[i + 1].Y / grain), pathCost);
                }
                grid.IncLine(new Point(points[points.Count - 2].X / grain, points[points.Count - 2].Y / grain), new Point(points[points.Count - 1].X / grain, points[points.Count - 1].Y / grain), pathCost);

                return points;
            }
        }

        private void _lineStyle()
        {
            // throw points that initially extend the noodle horizontally away from the pin
            Point outputThrowPoint = new Point(_outputPoint.X, _outputPoint.Y);
            Point inputThrowPoint = new Point(_inputPoint.X, _inputPoint.Y);

            Point autoscrollOffset = (_outputPin.ParentUIGraph as DaggerUIGraph).AutoScrollPosition;

            // if the segment is too small, just do a single line
            float dist = _distance(_outputPoint, _inputPoint);
            if (dist < 40)
            {
                path.AddLine(_outputPoint, _inputPoint);
                return;
            }

            List<Point> outputPoints = new List<Point>(6);
            outputPoints.Add(_outputPoint);

            List<Point> inputPoints = new List<Point>(6);
            inputPoints.Add(_inputPoint);

            bool isReversed = OutputPoint.X > InputPoint.X;

            // the collections the pins belong to
            List<DaggerOutputPin> outputPins = null;
            List<DaggerInputPin> inputPins = null;

            int inputPinCount = 0;

            // get the output pins and add the initial output pin throw point
            if (_outputPin.ParentNode != null)
            {
                outputPins = _outputPin.ParentNode.OutputPins.MutexAvailablePins;
                outputPoints.Add(new Point(outputThrowPoint.X + outputPins.IndexOf(_outputPin) * 10 + 10, outputThrowPoint.Y));
            }
            else
            {
                outputPins = _outputPin.ParentUIGraph.Graph.ImportedPins.List;
                outputPoints.Add(new Point(outputThrowPoint.X + outputPins.IndexOf(_outputPin) * 10 + 10, outputThrowPoint.Y));
            }

            // get the input pins and add the initial input pin throw point
            if (_inputPin.ParentNode != null)
            {
                inputPins = _inputPin.ParentNode.InputPins.MutexAvailablePins;
                inputPoints.Add(new Point(inputThrowPoint.X - (inputPins.Count - inputPins.IndexOf(_inputPin)) * 10 - 10, inputThrowPoint.Y));
            }
            else
            {
                inputPins = _inputPin.ParentUIGraph.Graph.ExportedPins.List;
                inputPoints.Add(new Point(inputThrowPoint.X + inputPins.IndexOf(_inputPin) * - 10 - 10, inputThrowPoint.Y));
            }

            //swivel the points under the node until they no longer intersect with the node's client rect
            if (_outputPin.ParentNode != null)
            {
                Rectangle rect = new Rectangle(_outputPin.ParentNode.UINode.Left - autoscrollOffset.X,
                                                _outputPin.ParentNode.UINode.Top - autoscrollOffset.Y, 
                                                _outputPin.ParentNode.UINode.Width, 
                                                _outputPin.ParentNode.UINode.Height);

                // swivel around the top or bottom
                int direction = _outputPoint.Y >= _inputPoint.Y ? rect.Top : rect.Bottom;

                if (Selector.lineRectangleIntersection(rect,outputPoints[outputPoints.Count - 1], inputPoints[inputPoints.Count - 1]))
                {
                    outputPoints.Add(new Point(outputPoints[outputPoints.Count -1].X, direction));
                }
            }

            if (_inputPin.ParentNode != null)
            {
                Rectangle rect = new Rectangle(_inputPin.ParentNode.UINode.Left - autoscrollOffset.X,
                                                _inputPin.ParentNode.UINode.Top - autoscrollOffset.Y,
                                                _inputPin.ParentNode.UINode.Width,
                                                _inputPin.ParentNode.UINode.Height);

                // swivel around the top or bottom
                int direction = _outputPoint.Y <= _inputPoint.Y ? rect.Top : rect.Bottom;

                if (Selector.lineRectangleIntersection(rect,outputPoints[outputPoints.Count - 1], inputPoints[inputPoints.Count - 1]))
                {
                    inputPoints.Add(new Point(inputPoints[inputPoints.Count - 1].X, direction));
                }
            }

            //reverse the inputPoints list and append to outputPoints
            inputPoints.Reverse();
            outputPoints.AddRange(inputPoints);

            path.AddLines(outputPoints.ToArray());
        }

        private void _bezierStyle()
        {
            int slopeOffset = 0;
            int bezcontroloffset = (InputPoint.X - OutputPoint.X) / 2;
            
            //if the slope is less than 0.1 and the points are inversed, lower the bezier control points
            float by = 0, bx = 0;
            float m = Math.Abs(_slope(InputPoint, OutputPoint,ref by, ref bx));

            if (m < 0.1 && _outputPin.ParentNode != null && (OutputPoint.X > InputPoint.X))
            {
                slopeOffset = _outputPin.ParentNode.OutputPins.MutexAvailablePins.IndexOf(_outputPin) * 10 + 50;
            }

            // if the slope is less than 0.1 and the points are NOT inversed, just use a strait line
            if (m < 0.1 && slopeOffset == 0)
            {
                path.AddLine(_outputPoint, _inputPoint);
            }
            else
            {
                // create a bezier curve
                if (OutputPoint.X <= InputPoint.X)
                {
                    if (_outputPin.ParentNode != null)
                    {
                        bezcontroloffset += _outputPin.ParentNode.OutputPins.MutexAvailablePins.IndexOf(_outputPin) * 20;
                    }
                    path.AddBezier(OutputPoint,
                       new Point(OutputPoint.X + bezcontroloffset, OutputPoint.Y + slopeOffset),
                       new Point(InputPoint.X - bezcontroloffset, InputPoint.Y + slopeOffset),
                       InputPoint);
                }
                else
                {
                    if (_outputPin.ParentNode != null)
                    {
                        bezcontroloffset += _outputPin.ParentNode.OutputPins.MutexAvailablePins.IndexOf(_outputPin) * -20;
                    }
                    path.AddBezier(OutputPoint,
                       new Point(OutputPoint.X - bezcontroloffset, OutputPoint.Y + slopeOffset),
                       new Point(InputPoint.X + bezcontroloffset, InputPoint.Y + slopeOffset),
                       InputPoint);
                }
                path.Flatten();
            }
        }

        /// <summary>
        /// Get the slope of 2 points
        /// </summary>
        private float _slope(Point p1, Point p2, ref float yintercept, ref float xintercept)
        {
            float m = (float)(p1.Y - p2.Y) / (float)(p1.X - p2.X);
            yintercept = p1.Y - (m * p1.X);
            xintercept = -1 * (yintercept / m);
            return m;
        }

        /// <summary>
        /// Get the midpoint of a horizontal line
        /// </summary>
        /// <param name="p1"></param>
        /// <param name="p2"></param>
        /// <returns></returns>
        private Point _hmidPoint(Point p1, Point p2)
        {
            if (p1.X < p2.X)
            {
                return new Point((int)((float)(p2.X - p1.X) / 2f) + p1.X, p1.Y);
            }
            else
            {
                return new Point((int)((float)(p1.X - p2.X) / 2f) + p2.X, p1.Y);
            }
        }

        /// <summary>
        /// Get the midpoint of a vertical line
        /// </summary>
        /// <param name="p1"></param>
        /// <param name="p2"></param>
        /// <returns></returns>
        private Point _vmidPoint(Point p1, Point p2)
        {
            if (p1.Y < p2.Y)
            {
                return new Point(p1.X, (int)((float)(p2.Y - p1.Y) / 2f) + p1.Y);
            }
            else
            {
                return new Point(p1.X, (int)((float)(p1.Y - p2.Y) / 2f) + p2.Y);
            }
        }

        /// <summary>
        /// Get the distance between 2 points
        /// </summary>
        private float _distance(Point a, Point b)
        {
            float xdiff = a.X - b.X;
            float ydiff = a.Y - b.Y;
            return (float)Math.Sqrt(xdiff * xdiff + ydiff * ydiff);
        }
    }

    public class DaggerNoodleContainer
    {
        private DaggerUIGraph _uigraph;
        private List<DaggerNoodle> _noodles;
        private NoodleStyle _style = NoodleStyle.Default;
        private int _updateRef = 0;

        public DaggerNoodleContainer(DaggerUIGraph uigraph,NoodleStyle style)
        {
            _uigraph = uigraph;
            _noodles = new List<DaggerNoodle>();
        }

        public List<IDaggerNoodle> Noodles
        {
            get
            {
                List<IDaggerNoodle> noodles = new List<IDaggerNoodle>();
                foreach (DaggerNoodle n in _noodles)
                {
                    noodles.Add(n);
                }
                return noodles;
            }
        }

        public NoodleStyle NoodleStyle
        {
            get
            {
                return _style;
            }
            set
            {
                _style = value;
                UpdateNoodles();
            }
        }

        public void Add(DaggerNoodle noodle)
        {
            _noodles.Add(noodle);
        }

        public void Remove(DaggerNoodle noodle)
        {
            _noodles.Remove(noodle);
        }

        public int BeginUpdate()
        {
            return _updateRef++;
        }

        public int EndUpdate()
        {
            _updateRef--;

            if (_updateRef <= 0)
            {
                _updateRef = 0;
                UpdateNoodles();
            }

            return _updateRef;
        }

        public void UpdateNoodles()
        {
            if (_updateRef == 0)
            {

                switch (_style)
                {
                    case NoodleStyle.Default:
                    case NoodleStyle.Bezier:
                        {
                            foreach (DaggerNoodle noodle in _noodles)
                            {
                                noodle.UpdateNoodlePath(NoodleStyle.Bezier, null);
                            }
                        }
                        break;
                    case NoodleStyle.Lines:
                        {
                            foreach (DaggerNoodle noodle in _noodles)
                            {
                                noodle.UpdateNoodlePath(NoodleStyle.Lines, null);
                            }
                        }
                        break;
                    case NoodleStyle.CircuitBoardCoarse:
                        {
                            // create the helper
                            AstarHelper helper = new AstarHelper();
                            helper.grain = 24;
                            helper.pathCost = 100;
                            helper.diagonalCost = 50;

                            // create the AStar path finder
                            helper.grid = _createPathGrid(_uigraph, helper.grain, helper.diagonalCost);
                            if (helper.grid == null) return;

                            foreach (DaggerNoodle noodle in _noodles)
                            {
                                noodle.UpdateNoodlePath(NoodleStyle.CircuitBoardCoarse, helper);
                                helper.grid.Reset();
                            }
                        }
                        break;
                    case NoodleStyle.CircuitBoardFine:
                        {
                            // create the helper
                            AstarHelper helper = new AstarHelper();
                            helper.grain = 16;
                            helper.pathCost = 100;
                            helper.diagonalCost = 20;

                            // create the AStar path finder
                            helper.grid = _createPathGrid(_uigraph, helper.grain, helper.diagonalCost);
                            if (helper.grid == null) return;

                            foreach (DaggerNoodle noodle in _noodles)
                            {
                                noodle.UpdateNoodlePath(NoodleStyle.CircuitBoardFine, helper);
                                helper.grid.Reset();
                            }
                        }
                        break;
                    case NoodleStyle.Ramen:
                        {
                            // create the helper
                            AstarHelper helper = new AstarHelper();
                            helper.grain = 16;
                            helper.pathCost = 100;
                            helper.diagonalCost = 20;

                            // create the AStar path finder
                            helper.grid = _createPathGrid(_uigraph, helper.grain, helper.diagonalCost);
                            if (helper.grid == null) return;

                            foreach (DaggerNoodle noodle in _noodles)
                            {
                                noodle.UpdateNoodlePath(NoodleStyle.Ramen, helper);
                                helper.grid.Reset();
                            }
                        }
                        break;
                    case NoodleStyle.BendyStraws:
                        {
                            // create the helper
                            AstarHelper helper = new AstarHelper();
                            helper.grain = 16;
                            helper.pathCost = 200;
                            helper.diagonalCost = 100;

                            // create the AStar path finder
                            helper.grid = _createPathGrid(_uigraph, helper.grain, helper.diagonalCost);
                            if (helper.grid == null) return;

                            foreach (DaggerNoodle noodle in _noodles)
                            {
                                noodle.UpdateNoodlePath(NoodleStyle.BendyStraws, helper);
                                helper.grid.Reset();
                            }
                        }
                        break;
                    default:
                        break;
                }
            }
        }

        private DaggerLib.UI.AStar.AStar _createPathGrid(DaggerUIGraph uigraph, int grain, int diagonalCost)
        {
            int w = (int)((float)uigraph.CanvasSize.Width / (float)grain) + 1;
            int h = (int)((float)uigraph.CanvasSize.Height / (float)grain) + 1;
            DaggerLib.UI.AStar.AStar grid = new DaggerLib.UI.AStar.AStar(
                new Rectangle(0, 0, w, h),
                10,
                diagonalCost,
                new Point(w - 1, h - 1));

            foreach (DaggerUINode node in uigraph.AllNodes)
            {
                int top = (int)((float)(node.Top - uigraph.AutoScrollPosition.Y) / (float)grain);
                int left = (int)((float)(node.Left - uigraph.AutoScrollPosition.X) / (float)grain);
                int right = (int)((float)(node.Right - uigraph.AutoScrollPosition.X) / (float)grain + 1);
                int bottom = (int)((float)(node.Bottom - uigraph.AutoScrollPosition.Y) / (float)grain + 1);

                if (top < 0 || bottom > h || left < 0 || right > w)
                {
                    //autoscroll has jumped the gun on updating the node positions
                    return null;
                }

                for (int u = left; u < right; u++)
                {
                    for (int v = top; v < bottom; v++)
                    {
                        grid[u, v].CellCost = int.MaxValue;
                    }
                }
            }

            // increase the cost of the imported/exported pin regions
            if (uigraph.Graph.ImportedPins.Count > 0)
            {
                int right = (int)((float)((uigraph.Graph.ImportedPins[0].PinUIElements as PinUI).PinLocation.X) / (float)grain + 1);
                for (int u = 0; u < right; u++)
                {
                    for (int v = 0; v < grid.Size.Height; v++)
                    {
                        grid[u, v].CellCost = int.MaxValue;
                    }
                }
            }

            if (uigraph.Graph.ExportedPins.Count > 0)
            {
                int left = (int)((float)((uigraph.Graph.ExportedPins[0].PinUIElements as PinUI).PinLocation.X) / (float)grain);
                for (int u = left; u <= grid.Size.Width; u++)
                {
                    for (int v = 0; v < grid.Size.Height; v++)
                    {
                        grid[u, v].CellCost = int.MaxValue;
                    }
                }
            }

            return grid;
        }
    }

    internal class AstarHelper
    {
        public DaggerLib.UI.AStar.AStar grid;
        public int pathCost = 100;
        public int grain = 24;
        public int diagonalCost = 50;
    }

    public enum NoodleStyle
    {
        Default,
        Bezier,
        Lines,
        CircuitBoardCoarse,
        CircuitBoardFine,
        Ramen,
        BendyStraws
    }
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)

Share

About the Author

JohnnyLocust
Software Developer (Senior) Haivision Network Video
United States United States
AKA Rich Insley.
 
I have over 25 years experience in programming, and I'm completely self taught. (Except for one year at California State University Fresno where I had to learn the God awful language Miranda (http://miranda.org.uk/). I've spent 10 years as a Paratrooper in the US Army during the Clinton Administration.
Follow on   LinkedIn

| Advertise | Privacy | Mobile
Web04 | 2.8.140916.1 | Last Updated 20 Dec 2007
Article Copyright 2007 by JohnnyLocust
Everything else Copyright © CodeProject, 1999-2014
Terms of Service
Layout: fixed | fluid