Click here to Skip to main content
15,886,806 members
Articles / Programming Languages / XML

XMLFoundation

Rate me:
Please Sign up or sign in to vote.
4.82/5 (12 votes)
2 Jul 20029 min read 75.2K   1.4K   34  
Obtaining data marked up in XML creates the need for Application Layer tools to easily and efficiently work with XML data.
/*
 * mutex.c
 *
 * Description:
 * This translation unit implements mutual exclusion (mutex) primitives.
 *
 * Pthreads-win32 - POSIX Threads Library for Win32
 * Copyright (C) 1998
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the Free
 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 * MA 02111-1307, USA
 */

#include <errno.h>

#include "pthread.h"
#include "implement.h"


static int
_mutex_check_need_init(pthread_mutex_t *mutex)
{
  int result = 0;

  /*
   * The following guarded test is specifically for statically
   * initialised mutexes (via PTHREAD_MUTEX_INITIALIZER).
   *
   * Note that by not providing this synchronisation we risk
   * introducing race conditions into applications which are
   * correctly written.
   *
   * Approach
   * --------
   * We know that static mutexes will not be PROCESS_SHARED
   * so we can serialise access to internal state using
   * Win32 Critical Sections rather than Win32 Mutexes.
   *
   * If using a single global lock slows applications down too much,
   * multiple global locks could be created and hashed on some random
   * value associated with each mutex, the pointer perhaps. At a guess,
   * a good value for the optimal number of global locks might be
   * the number of processors + 1.
   *
   */
  EnterCriticalSection(&_pthread_mutex_test_init_lock);

  /*
   * We got here possibly under race
   * conditions. Check again inside the critical section
   * and only initialise if the mutex is valid (not been destroyed).
   * If a static mutex has been destroyed, the application can
   * re-initialise it only by calling pthread_mutex_init()
   * explicitly.
   */
  if (*mutex == (pthread_mutex_t) _PTHREAD_OBJECT_AUTO_INIT)
    {
      result = pthread_mutex_init(mutex, NULL);
    }
  else if (*mutex == NULL)
    {
      /*
       * The mutex has been destroyed while we were waiting to
       * initialise it, so the operation that caused the
       * auto-initialisation should fail.
       */
      result = EINVAL;
    }

  LeaveCriticalSection(&_pthread_mutex_test_init_lock);

  return(result);
}

int
pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
{
  int result = 0;
  pthread_mutex_t mx;

  if (mutex == NULL)
    {
      return EINVAL;
    }

  mx = *mutex;

  mx = (pthread_mutex_t) calloc(1, sizeof(*mx));

  if (mx == NULL)
    {
      result = ENOMEM;
      goto FAIL0;
    }

  mx->mutex = 0;

  if (attr != NULL
      && *attr != NULL
      && (*attr)->pshared == PTHREAD_PROCESS_SHARED
      )
    {
      /*
       * Creating mutex that can be shared between
       * processes.
       */
#if _POSIX_THREAD_PROCESS_SHARED

      /*
       * Not implemented yet.
       */

#error ERROR [__FILE__, line __LINE__]: Process shared mutexes are not supported yet.

      mx->mutex = CreateMutex (
				  NULL,
				  FALSE,
				  ????);
      result = (mx->mutex == 0) ? EAGAIN : 0;

#else

      result = ENOSYS;

#endif /* _POSIX_THREAD_PROCESS_SHARED */
    }
  else
    {
      if (_pthread_try_enter_critical_section != NULL
	  || (attr != NULL
	      && *attr != NULL
	      && (*attr)->forcecs == 1)
	  )
	{
	  /* 
	   * Create a critical section. 
	   */
	  InitializeCriticalSection(&mx->cs);
	}
      else
	{
	  /*
	   * Create a mutex that can only be used within the
	   * current process
	   */
	  mx->mutex = CreateMutex (NULL,
				   FALSE,
				   NULL);

	  if (mx->mutex == 0)
	    {
	      result = EAGAIN;
	      mx = NULL;
	      goto FAIL0;
	    }
	}
    }

FAIL0:
  *mutex = mx;

  return(result);
}

int
pthread_mutex_destroy(pthread_mutex_t *mutex)
{
  int result = 0;
  pthread_mutex_t mx;

  if (mutex == NULL
      || *mutex == NULL)
    {
      return EINVAL;
    }

  /*
   * Check to see if we have something to delete.
   */
  if (*mutex != (pthread_mutex_t) _PTHREAD_OBJECT_AUTO_INIT)
    {
      mx = *mutex;

      if (mx->mutex == 0)
	{
	  DeleteCriticalSection(&mx->cs);
	}
      else
	{
	  result = (CloseHandle (mx->mutex) ? 0 : EINVAL);
	}

      if (result == 0)
        {
          mx->mutex = 0;
          free(mx);
          *mutex = NULL;
        }
    }
  else
    {
      /*
       * See notes in _mutex_check_need_init() above also.
       */
      EnterCriticalSection(&_pthread_mutex_test_init_lock);

      /*
       * Check again.
       */
      if (*mutex == (pthread_mutex_t) _PTHREAD_OBJECT_AUTO_INIT)
        {
          /*
           * This is all we need to do to destroy a statically
           * initialised mutex that has not yet been used (initialised).
           * If we get to here, another thread
           * waiting to initialise this mutex will get an EINVAL.
           */
          *mutex = NULL;
        }
      else
        {
          /*
           * The mutex has been initialised while we were waiting
           * so assume it's in use.
           */
          result = EBUSY;
        }

      LeaveCriticalSection(&_pthread_mutex_test_init_lock);
    }

  return(result);
}

int
pthread_mutexattr_init (pthread_mutexattr_t * attr)
     /*
      * ------------------------------------------------------
      * DOCPUBLIC
      *      Initializes a mutex attributes object with default
      *      attributes.
      *
      * PARAMETERS
      *      attr
      *              pointer to an instance of pthread_mutexattr_t
      *
      *
      * DESCRIPTION
      *      Initializes a mutex attributes object with default
      *      attributes.
      *
      *      NOTES:
      *              1)      Used to define mutex types
      *
      * RESULTS
      *              0               successfully initialized attr,
      *              ENOMEM          insufficient memory for attr.
      *
      * ------------------------------------------------------
      */
{
  pthread_mutexattr_t attr_result;
  int result = 0;

  attr_result = (pthread_mutexattr_t) calloc (1, sizeof (*attr_result));

  result = (attr_result == NULL)
    ? ENOMEM
    : 0;

  *attr = attr_result;

  return (result);

}                               /* pthread_mutexattr_init */


int
pthread_mutexattr_destroy (pthread_mutexattr_t * attr)
     /*
      * ------------------------------------------------------
      * DOCPUBLIC
      *      Destroys a mutex attributes object. The object can
      *      no longer be used.
      *
      * PARAMETERS
      *      attr
      *              pointer to an instance of pthread_mutexattr_t
      *
      *
      * DESCRIPTION
      *      Destroys a mutex attributes object. The object can
      *      no longer be used.
      *
      *      NOTES:
      *              1)      Does not affect mutexes created using 'attr'
      *
      * RESULTS
      *              0               successfully released attr,
      *              EINVAL          'attr' is invalid.
      *
      * ------------------------------------------------------
      */
{
  int result = 0;

  if (attr == NULL || *attr == NULL)
    {
      result = EINVAL;

    }
  else
    {
      free (*attr);

      *attr = NULL;
      result = 0;
    }

  return (result);

}                               /* pthread_mutexattr_destroy */


int
pthread_mutexattr_setforcecs_np(pthread_mutexattr_t *attr,
				int forcecs)
{
  if (attr == NULL || *attr == NULL)
    {
      /* This is disallowed. */
      return EINVAL;
    }

  (*attr)->forcecs = forcecs;

  return 0;
}


int
pthread_mutexattr_getpshared (const pthread_mutexattr_t * attr,
			      int *pshared)
     /*
      * ------------------------------------------------------
      * DOCPUBLIC
      *      Determine whether mutexes created with 'attr' can be
      *      shared between processes.
      *
      * PARAMETERS
      *      attr
      *              pointer to an instance of pthread_mutexattr_t
      *
      *      pshared
      *              will be set to one of:
      *
      *                      PTHREAD_PROCESS_SHARED
      *                              May be shared if in shared memory
      *
      *                      PTHREAD_PROCESS_PRIVATE
      *                              Cannot be shared.
      *
      *
      * DESCRIPTION
      *      Mutexes creatd with 'attr' can be shared between
      *      processes if pthread_mutex_t variable is allocated
      *      in memory shared by these processes.
      *      NOTES:
      *              1)      pshared mutexes MUST be allocated in shared
      *                      memory.
      *              2)      The following macro is defined if shared mutexes
      *                      are supported:
      *                              _POSIX_THREAD_PROCESS_SHARED
      *
      * RESULTS
      *              0               successfully retrieved attribute,
      *              EINVAL          'attr' is invalid,
      *
      * ------------------------------------------------------
      */
{
  int result;

  if ((attr != NULL && *attr != NULL) &&
      (pshared != NULL))
    {
      *pshared = (*attr)->pshared;
      result = 0;
    }
  else
    {
      *pshared = PTHREAD_PROCESS_PRIVATE;
      result = EINVAL;
    }

  return (result);

}                               /* pthread_mutexattr_getpshared */


int
pthread_mutexattr_setpshared (pthread_mutexattr_t * attr,
			      int pshared)
     /*
      * ------------------------------------------------------
      * DOCPUBLIC
      *      Mutexes created with 'attr' can be shared between
      *      processes if pthread_mutex_t variable is allocated
      *      in memory shared by these processes.
      *
      * PARAMETERS
      *      attr
      *              pointer to an instance of pthread_mutexattr_t
      *
      *      pshared
      *              must be one of:
      *
      *                      PTHREAD_PROCESS_SHARED
      *                              May be shared if in shared memory
      *
      *                      PTHREAD_PROCESS_PRIVATE
      *                              Cannot be shared.
      *
      * DESCRIPTION
      *      Mutexes creatd with 'attr' can be shared between
      *      processes if pthread_mutex_t variable is allocated
      *      in memory shared by these processes.
      *
      *      NOTES:
      *              1)      pshared mutexes MUST be allocated in shared
      *                      memory.
      *
      *              2)      The following macro is defined if shared mutexes
      *                      are supported:
      *                              _POSIX_THREAD_PROCESS_SHARED
      *
      * RESULTS
      *              0               successfully set attribute,
      *              EINVAL          'attr' or pshared is invalid,
      *              ENOSYS          PTHREAD_PROCESS_SHARED not supported,
      *
      * ------------------------------------------------------
      */
{
  int result;

  if ((attr != NULL && *attr != NULL) &&
      ((pshared == PTHREAD_PROCESS_SHARED) ||
       (pshared == PTHREAD_PROCESS_PRIVATE)))
    {
      if (pshared == PTHREAD_PROCESS_SHARED)
        {

#if !defined( _POSIX_THREAD_PROCESS_SHARED )

          result = ENOSYS;
          pshared = PTHREAD_PROCESS_PRIVATE;

#else

          result = 0;

#endif /* _POSIX_THREAD_PROCESS_SHARED */

        }
      else
        {
          result = 0;
        }
      (*attr)->pshared = pshared;
    }
  else
    {
      result = EINVAL;
    }

  return (result);

}                               /* pthread_mutexattr_setpshared */


int
pthread_mutex_lock(pthread_mutex_t *mutex)
{
  int result = 0;
  pthread_mutex_t mx;

  if (mutex == NULL || *mutex == NULL)
    {
      return EINVAL;
    }

  /*
   * We do a quick check to see if we need to do more work
   * to initialise a static mutex. We check
   * again inside the guarded section of _mutex_check_need_init()
   * to avoid race conditions.
   */
  if (*mutex == (pthread_mutex_t) _PTHREAD_OBJECT_AUTO_INIT)
    {
      result = _mutex_check_need_init(mutex);
    }

  mx = *mutex;

  if (result == 0)
    {
      if (mx->mutex == 0)
	{
	  EnterCriticalSection(&mx->cs);
	}
      else
	{
	  result = (WaitForSingleObject(mx->mutex, INFINITE) 
		    == WAIT_OBJECT_0)
	    ? 0
	    : EINVAL;
	}
    }

  return(result);
}

int
pthread_mutex_unlock(pthread_mutex_t *mutex)
{
  int result = 0;
  pthread_mutex_t mx;

  if (mutex == NULL || *mutex == NULL)
    {
      return EINVAL;
    }

  mx = *mutex;

  /* 
   * If the thread calling us holds the mutex then there is no
   * race condition. If another thread holds the
   * lock then we shouldn't be in here.
   */
  if (mx != (pthread_mutex_t) _PTHREAD_OBJECT_AUTO_INIT)
    {
      if (mx->mutex == 0)
	{
	  LeaveCriticalSection(&mx->cs);
	}
      else
	{
	  result = (ReleaseMutex (mx->mutex) ? 0 : EINVAL);
	}
    }
  else
    {
      result = EINVAL;
    }

  return(result);
}

int
pthread_mutex_trylock(pthread_mutex_t *mutex)
{
  int result = 0;
  pthread_mutex_t mx;

  if (mutex == NULL || *mutex == NULL)
    {
      return EINVAL;
    }

  /*
   * We do a quick check to see if we need to do more work
   * to initialise a static mutex. We check
   * again inside the guarded section of _mutex_check_need_init()
   * to avoid race conditions.
   */
  if (*mutex == (pthread_mutex_t) _PTHREAD_OBJECT_AUTO_INIT)
    {
      result = _mutex_check_need_init(mutex);
    }

  mx = *mutex;

  if (result == 0)
    {
      if (mx->mutex == 0)
	{
	  if ((*_pthread_try_enter_critical_section)(&mx->cs) != TRUE)
	    {
	      result = EBUSY;
	    }
	}
      else
	{
	  DWORD status;

	  status = WaitForSingleObject (mx->mutex, 0);

	  if (status != WAIT_OBJECT_0)
	    {
	      result = ((status == WAIT_TIMEOUT)
			? EBUSY
			: EINVAL);
	    }
	}
    }

  return(result);
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article has no explicit license attached to it but may contain usage terms in the article text or the download files themselves. If in doubt please contact the author via the discussion board below.

A list of licenses authors might use can be found here


Written By
Founder United Business Technologies
United States United States
http://about.me/brian.aberle
https://www.linkedin.com/in/brianaberle
http://SyrianRue.org/Brian

Comments and Discussions