Click here to Skip to main content
15,885,985 members
Articles / Programming Languages / CUDA

odeint v2 - Solving ordinary differential equations in C++

Rate me:
Please Sign up or sign in to vote.
4.64/5 (18 votes)
19 Oct 2011CPOL19 min read 129.1K   2.8K   34  
odeint v2 - Solving ordinary differential equations in C++
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Stiff systems</title>
<link rel="stylesheet" href="../../boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.73.2">
<link rel="start" href="../../index.html" title="Chapter&#160;1.&#160;boost.sandbox.numeric.odeint">
<link rel="up" href="../tutorial.html" title="Tutorial">
<link rel="prev" href="chaotic_systems_and_lyapunov_exponents.html" title="Chaotic systems and Lyapunov exponents">
<link rel="next" href="special_topics.html" title="Special topics">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr><td valign="top"></td></tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="chaotic_systems_and_lyapunov_exponents.html"><img src="../../images/prev.png" alt="Prev"></a><a accesskey="u" href="../tutorial.html"><img src="../../images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../images/home.png" alt="Home"></a><a accesskey="n" href="special_topics.html"><img src="../../images/next.png" alt="Next"></a>
</div>
<div class="section" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="boost_sandbox_numeric_odeint.tutorial.stiff_systems"></a><a class="link" href="stiff_systems.html" title="Stiff systems">Stiff
      systems</a>
</h3></div></div></div>
<p>
        An important class of ordinary differential equations are so called stiff
        system which are characterized by two or more time scales of different order.
      </p>
<p>
        what are stiff systems?
      </p>
<p>
        examples
      </p>
<p>
        applications
      </p>
<p>
        To solve stiff systems numerically the Jacobian
      </p>
<p>
        <span class="emphasis"><em>J = d f<sub>&#8203;i</sub> / d x<sub>&#8203;j</sub></em></span>
      </p>
<p>
        is needed. Here is the definition of the above example
      </p>
<p>
        
</p>
<pre class="programlisting"><span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">&gt;</span> <span class="identifier">vector_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">matrix</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">&gt;</span> <span class="identifier">matrix_type</span><span class="special">;</span>

<span class="keyword">struct</span> <span class="identifier">stiff_system</span>
<span class="special">{</span>
    <span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">vector_type</span> <span class="special">&amp;</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">vector_type</span> <span class="special">&amp;</span><span class="identifier">dxdt</span> <span class="special">,</span> <span class="keyword">double</span> <span class="identifier">t</span> <span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">dxdt</span><span class="special">[</span> <span class="number">0</span> <span class="special">]</span> <span class="special">=</span> <span class="special">-</span><span class="number">101.0</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">[</span> <span class="number">0</span> <span class="special">]</span> <span class="special">-</span> <span class="number">100.0</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">[</span> <span class="number">1</span> <span class="special">];</span>
        <span class="identifier">dxdt</span><span class="special">[</span> <span class="number">1</span> <span class="special">]</span> <span class="special">=</span> <span class="identifier">x</span><span class="special">[</span> <span class="number">0</span> <span class="special">];</span>
    <span class="special">}</span>
<span class="special">};</span>

<span class="keyword">struct</span> <span class="identifier">stiff_system_jacobi</span>
<span class="special">{</span>
    <span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">vector_type</span> <span class="special">&amp;</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">matrix_type</span> <span class="special">&amp;</span><span class="identifier">J</span> <span class="special">,</span> <span class="keyword">const</span> <span class="keyword">double</span> <span class="special">&amp;</span><span class="identifier">t</span> <span class="special">,</span> <span class="identifier">vector_type</span> <span class="special">&amp;</span><span class="identifier">dfdt</span> <span class="special">)</span>
    <span class="special">{</span>
        <span class="identifier">J</span><span class="special">(</span> <span class="number">0</span> <span class="special">,</span> <span class="number">0</span> <span class="special">)</span> <span class="special">=</span> <span class="special">-</span><span class="number">101.0</span><span class="special">;</span>
        <span class="identifier">J</span><span class="special">(</span> <span class="number">0</span> <span class="special">,</span> <span class="number">1</span> <span class="special">)</span> <span class="special">=</span> <span class="special">-</span><span class="number">100.0</span><span class="special">;</span>
        <span class="identifier">J</span><span class="special">(</span> <span class="number">1</span> <span class="special">,</span> <span class="number">0</span> <span class="special">)</span> <span class="special">=</span> <span class="number">1.0</span><span class="special">;</span>
        <span class="identifier">J</span><span class="special">(</span> <span class="number">1</span> <span class="special">,</span> <span class="number">1</span> <span class="special">)</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">;</span>
        <span class="identifier">dfdt</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">;</span>
        <span class="identifier">dfdt</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">;</span>
    <span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
      </p>
<p>
        The state type has to be a <code class="computeroutput"><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">vector</span></code>
        and the matrix type must by a <code class="computeroutput"><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">matrix</span></code>
        since the stiff integrator only accepts these types. With a little trick
        you can simply make this functions valid for other state and matrix types,
        just templatize the <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>:
      </p>
<p>
        
</p>
<pre class="programlisting"><span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">&gt;</span> <span class="identifier">vector_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">matrix</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">&gt;</span> <span class="identifier">matrix_type</span><span class="special">;</span>

<span class="keyword">struct</span> <span class="identifier">stiff_system</span>
<span class="special">{</span>
	<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">class</span> <span class="identifier">State</span> <span class="special">&gt;</span>
	<span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">State</span> <span class="special">&amp;</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">State</span> <span class="special">&amp;</span><span class="identifier">dxdt</span> <span class="special">,</span> <span class="keyword">double</span> <span class="identifier">t</span> <span class="special">)</span>
	<span class="special">{</span>
	<span class="special">}</span>
<span class="special">};</span>

<span class="keyword">struct</span> <span class="identifier">stiff_system_jacobi</span>
<span class="special">{</span>
	<span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">class</span> <span class="identifier">State</span> <span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Matrix</span> <span class="special">&gt;</span>
	<span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">State</span> <span class="special">&amp;</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">Matrix</span> <span class="special">&amp;</span><span class="identifier">J</span> <span class="special">,</span> <span class="keyword">const</span> <span class="keyword">double</span> <span class="special">&amp;</span><span class="identifier">t</span> <span class="special">,</span> <span class="identifier">State</span> <span class="special">&amp;</span><span class="identifier">dfdt</span> <span class="special">)</span>
	<span class="special">{</span>
	<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
      </p>
<p>
        Now you can use <code class="computeroutput"><span class="identifier">stiff_system</span></code>
        in combination with <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span></code> or <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">tr1</span><span class="special">::</span><span class="identifier">array</span></code>. In the example the explicit time
        derivative of <span class="emphasis"><em>f(x,t)</em></span> is introduced separately in the
        Jacobian. If <span class="emphasis"><em>df / dt = 0</em></span> simply fill <code class="computeroutput"><span class="identifier">dfdt</span></code>
        with zeros.
      </p>
<p>
        A well know solver for stiff systems is the so called Rosenbrock method.
        It has a step size control and dense output facilities and can be used like
        all the other stepper:
      </p>
<p>
        
</p>
<pre class="programlisting"><span class="keyword">typedef</span> <span class="identifier">rosenbrock4</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">&gt;</span> <span class="identifier">stepper_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">rosenbrock4_controller</span><span class="special">&lt;</span> <span class="identifier">stepper_type</span> <span class="special">&gt;</span> <span class="identifier">controlled_stepper_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">rosenbrock4_dense_output</span><span class="special">&lt;</span> <span class="identifier">controlled_stepper_type</span> <span class="special">&gt;</span> <span class="identifier">dense_output_type</span><span class="special">;</span>

<span class="identifier">vector_type</span> <span class="identifier">x</span><span class="special">(</span> <span class="number">3</span> <span class="special">,</span> <span class="number">1.0</span> <span class="special">);</span>

<span class="identifier">size_t</span> <span class="identifier">num_of_steps</span> <span class="special">=</span> <span class="identifier">integrate_const</span><span class="special">(</span> <span class="identifier">dense_output_type</span><span class="special">()</span> <span class="special">,</span>
        <span class="identifier">make_pair</span><span class="special">(</span> <span class="identifier">stiff_system</span><span class="special">()</span> <span class="special">,</span> <span class="identifier">stiff_system_jacobi</span><span class="special">()</span> <span class="special">)</span> <span class="special">,</span>
        <span class="identifier">x</span> <span class="special">,</span> <span class="number">0.0</span> <span class="special">,</span> <span class="number">50.0</span> <span class="special">,</span> <span class="number">0.01</span> <span class="special">,</span>
        <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">phoenix</span><span class="special">::</span><span class="identifier">arg_names</span><span class="special">::</span><span class="identifier">arg2</span> <span class="special">&lt;&lt;</span> <span class="string">" "</span> <span class="special">&lt;&lt;</span> <span class="identifier">phoenix</span><span class="special">::</span><span class="identifier">arg_names</span><span class="special">::</span><span class="identifier">arg1</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="string">"\n"</span> <span class="special">);</span>
</pre>
<p>
      </p>
<p>
        During the integration 71 steps have been done. Comparing to a classical
        Runge-Kutta solver this is a very good result. For example the Dormand-Prince
        5 method with step size control and dense output yields 1531 steps.
      </p>
<p>
        
</p>
<pre class="programlisting"><span class="keyword">typedef</span> <span class="identifier">runge_kutta_dopri5</span><span class="special">&lt;</span> <span class="identifier">vector_type</span> <span class="special">&gt;</span> <span class="identifier">dopri5_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">controlled_error_stepper</span><span class="special">&lt;</span> <span class="identifier">dopri5_type</span> <span class="special">&gt;</span> <span class="identifier">controlled_dopri5_type</span><span class="special">;</span>
<span class="keyword">typedef</span> <span class="identifier">dense_output_controlled_explicit</span><span class="special">&lt;</span> <span class="identifier">controlled_dopri5_type</span> <span class="special">&gt;</span> <span class="identifier">dense_output_dopri5_type</span><span class="special">;</span>

<span class="identifier">vector_type</span> <span class="identifier">x2</span><span class="special">(</span> <span class="number">3</span> <span class="special">,</span> <span class="number">1.0</span> <span class="special">);</span>

<span class="identifier">size_t</span> <span class="identifier">num_of_steps2</span> <span class="special">=</span> <span class="identifier">integrate_const</span><span class="special">(</span> <span class="identifier">dense_output_dopri5_type</span><span class="special">()</span> <span class="special">,</span>
        <span class="identifier">stiff_system</span><span class="special">()</span> <span class="special">,</span> <span class="identifier">x2</span> <span class="special">,</span> <span class="number">0.0</span> <span class="special">,</span> <span class="number">50.0</span> <span class="special">,</span> <span class="number">0.01</span> <span class="special">,</span>
        <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">phoenix</span><span class="special">::</span><span class="identifier">arg_names</span><span class="special">::</span><span class="identifier">arg2</span> <span class="special">&lt;&lt;</span> <span class="string">" "</span> <span class="special">&lt;&lt;</span> <span class="identifier">phoenix</span><span class="special">::</span><span class="identifier">arg_names</span><span class="special">::</span><span class="identifier">arg1</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="string">"\n"</span> <span class="special">);</span>
</pre>
<p>
      </p>
<p>
        Note, that we have used <a href="http://www.boost.org/doc/libs/1_46_1/libs/spirit/phoenix/doc/html/index.html" target="_top">Boost.Phoenix</a>
        a great functional programming library to create and compose the observer.
      </p>
<p>
        The full example can be found here: <a href="../../../../examples/stiff_system.cpp" target="_top">../../examples/stiff_system.cpp</a>
      </p>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2009 -2011 Karsten Ahnert and Mario Mulansky<p>
        Distributed under the Boost Software License, Version 1.0. (See accompanying
        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
      </p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="chaotic_systems_and_lyapunov_exponents.html"><img src="../../images/prev.png" alt="Prev"></a><a accesskey="u" href="../tutorial.html"><img src="../../images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../images/home.png" alt="Home"></a><a accesskey="n" href="special_topics.html"><img src="../../images/next.png" alt="Next"></a>
</div>
</body>
</html>

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Germany Germany
This member has not yet provided a Biography. Assume it's interesting and varied, and probably something to do with programming.

Comments and Discussions