Click here to Skip to main content
15,893,190 members
Articles / Mobile Apps

Windows Phone Labyrinth

Rate me:
Please Sign up or sign in to vote.
4.95/5 (53 votes)
31 Jan 2012CPOL10 min read 131.1K   53.8K   115  
A Windows Phone application using accelerometer emulator and Farseer physics engine
/* Poly2Tri
 * Copyright (c) 2009-2010, Poly2Tri Contributors
 * http://code.google.com/p/poly2tri/
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * * Redistributions of source code must retain the above copyright notice,
 *   this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above copyright notice,
 *   this list of conditions and the following disclaimer in the documentation
 *   and/or other materials provided with the distribution.
 * * Neither the name of Poly2Tri nor the names of its contributors may be
 *   used to endorse or promote products derived from this software without specific
 *   prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

// Changes from the Java version
//   attributification
// Future possibilities
//   Flattening out the number of indirections
//     Replacing arrays of 3 with fixed-length arrays?
//     Replacing bool[3] with a bit array of some sort?
//     Bundling everything into an AoS mess?
//     Hardcode them all as ABC ?

using System;
using System.Collections.Generic;
using System.Diagnostics;
using Poly2Tri.Triangulation.Delaunay.Sweep;
using Poly2Tri.Triangulation.Util;

namespace Poly2Tri.Triangulation.Delaunay
{
    public class DelaunayTriangle
    {
        /** Neighbor pointers */

        /** Flags to determine if an edge is a Delauney edge */
        public FixedBitArray3 EdgeIsConstrained;

        /** Flags to determine if an edge is a Constrained edge */
        public FixedBitArray3 EdgeIsDelaunay;
        public FixedArray3<DelaunayTriangle> Neighbors;

        /** Has this triangle been marked as an interior triangle? */

        public FixedArray3<TriangulationPoint> Points;

        public DelaunayTriangle(TriangulationPoint p1, TriangulationPoint p2, TriangulationPoint p3)
        {
            Points[0] = p1;
            Points[1] = p2;
            Points[2] = p3;
        }

        public bool IsInterior { get; set; }

        public int IndexOf(TriangulationPoint p)
        {
            int i = Points.IndexOf(p);
            if (i == -1) throw new Exception("Calling index with a point that doesn't exist in triangle");
            return i;
        }

        //TODO: Port note - different implementation
        public int IndexCW(TriangulationPoint p)
        {
            int index = IndexOf(p);
            switch (index)
            {
                case 0:
                    return 2;
                case 1:
                    return 0;
                default:
                    return 1;
            }
        }

        //TODO: Port note - different implementation
        public int IndexCCW(TriangulationPoint p)
        {
            int index = IndexOf(p);
            switch (index)
            {
                case 0:
                    return 1;
                case 1:
                    return 2;
                default:
                    return 0;
            }
        }

        public bool Contains(TriangulationPoint p)
        {
            return (p == Points[0] || p == Points[1] || p == Points[2]);
        }

        public bool Contains(DTSweepConstraint e)
        {
            return (Contains(e.P) && Contains(e.Q));
        }

        public bool Contains(TriangulationPoint p, TriangulationPoint q)
        {
            return (Contains(p) && Contains(q));
        }

        /// <summary>
        /// Update neighbor pointers
        /// </summary>
        /// <param name="p1">Point 1 of the shared edge</param>
        /// <param name="p2">Point 2 of the shared edge</param>
        /// <param name="t">This triangle's new neighbor</param>
        private void MarkNeighbor(TriangulationPoint p1, TriangulationPoint p2, DelaunayTriangle t)
        {
            if ((p1 == Points[2] && p2 == Points[1]) || (p1 == Points[1] && p2 == Points[2]))
            {
                Neighbors[0] = t;
            }
            else if ((p1 == Points[0] && p2 == Points[2]) || (p1 == Points[2] && p2 == Points[0]))
            {
                Neighbors[1] = t;
            }
            else if ((p1 == Points[0] && p2 == Points[1]) || (p1 == Points[1] && p2 == Points[0]))
            {
                Neighbors[2] = t;
            }
            else
            {
                Debug.WriteLine("Neighbor error, please report!");
                // throw new Exception("Neighbor error, please report!");
            }
        }

        /// <summary>
        /// Exhaustive search to update neighbor pointers
        /// </summary>
        public void MarkNeighbor(DelaunayTriangle t)
        {
            if (t.Contains(Points[1], Points[2]))
            {
                Neighbors[0] = t;
                t.MarkNeighbor(Points[1], Points[2], this);
            }
            else if (t.Contains(Points[0], Points[2]))
            {
                Neighbors[1] = t;
                t.MarkNeighbor(Points[0], Points[2], this);
            }
            else if (t.Contains(Points[0], Points[1]))
            {
                Neighbors[2] = t;
                t.MarkNeighbor(Points[0], Points[1], this);
            }
            else
            {
                Debug.WriteLine("markNeighbor failed");
            }
        }

        public void ClearNeighbors()
        {
            Neighbors[0] = Neighbors[1] = Neighbors[2] = null;
        }

        public void ClearNeighbor(DelaunayTriangle triangle)
        {
            if (Neighbors[0] == triangle)
            {
                Neighbors[0] = null;
            }
            else if (Neighbors[1] == triangle)
            {
                Neighbors[1] = null;
            }
            else
            {
                Neighbors[2] = null;
            }
        }

        /**
         * Clears all references to all other triangles and points
         */

        public void Clear()
        {
            DelaunayTriangle t;
            for (int i = 0; i < 3; i++)
            {
                t = Neighbors[i];
                if (t != null)
                {
                    t.ClearNeighbor(this);
                }
            }
            ClearNeighbors();
            Points[0] = Points[1] = Points[2] = null;
        }

        /// <param name="t">Opposite triangle</param>
        /// <param name="p">The point in t that isn't shared between the triangles</param>
        public TriangulationPoint OppositePoint(DelaunayTriangle t, TriangulationPoint p)
        {
            Debug.Assert(t != this, "self-pointer error");
            return PointCW(t.PointCW(p));
        }

        public DelaunayTriangle NeighborCW(TriangulationPoint point)
        {
            return Neighbors[(Points.IndexOf(point) + 1)%3];
        }

        public DelaunayTriangle NeighborCCW(TriangulationPoint point)
        {
            return Neighbors[(Points.IndexOf(point) + 2)%3];
        }

        public DelaunayTriangle NeighborAcross(TriangulationPoint point)
        {
            return Neighbors[Points.IndexOf(point)];
        }

        public TriangulationPoint PointCCW(TriangulationPoint point)
        {
            return Points[(IndexOf(point) + 1)%3];
        }

        public TriangulationPoint PointCW(TriangulationPoint point)
        {
            return Points[(IndexOf(point) + 2)%3];
        }

        private void RotateCW()
        {
            var t = Points[2];
            Points[2] = Points[1];
            Points[1] = Points[0];
            Points[0] = t;
        }

        /// <summary>
        /// Legalize triangle by rotating clockwise around oPoint
        /// </summary>
        /// <param name="oPoint">The origin point to rotate around</param>
        /// <param name="nPoint">???</param>
        public void Legalize(TriangulationPoint oPoint, TriangulationPoint nPoint)
        {
            RotateCW();
            Points[IndexCCW(oPoint)] = nPoint;
        }

        public override string ToString()
        {
            return Points[0] + "," + Points[1] + "," + Points[2];
        }

        /// <summary>
        /// Finalize edge marking
        /// </summary>
        public void MarkNeighborEdges()
        {
            for (int i = 0; i < 3; i++)
                if (EdgeIsConstrained[i] && Neighbors[i] != null)
                {
                    Neighbors[i].MarkConstrainedEdge(Points[(i + 1)%3], Points[(i + 2)%3]);
                }
        }

        public void MarkEdge(DelaunayTriangle triangle)
        {
            for (int i = 0; i < 3; i++)
                if (EdgeIsConstrained[i])
                {
                    triangle.MarkConstrainedEdge(Points[(i + 1)%3], Points[(i + 2)%3]);
                }
        }

        public void MarkEdge(List<DelaunayTriangle> tList)
        {
            foreach (DelaunayTriangle t in tList)
                for (int i = 0; i < 3; i++)
                    if (t.EdgeIsConstrained[i])
                    {
                        MarkConstrainedEdge(t.Points[(i + 1)%3], t.Points[(i + 2)%3]);
                    }
        }

        public void MarkConstrainedEdge(int index)
        {
            EdgeIsConstrained[index] = true;
        }

        public void MarkConstrainedEdge(DTSweepConstraint edge)
        {
            MarkConstrainedEdge(edge.P, edge.Q);
        }

        /// <summary>
        /// Mark edge as constrained
        /// </summary>
        public void MarkConstrainedEdge(TriangulationPoint p, TriangulationPoint q)
        {
            int i = EdgeIndex(p, q);
            if (i != -1) EdgeIsConstrained[i] = true;
        }

        public double Area()
        {
            double b = Points[0].X - Points[1].X;
            double h = Points[2].Y - Points[1].Y;

            return Math.Abs((b*h*0.5f));
        }

        public TriangulationPoint Centroid()
        {
            double cx = (Points[0].X + Points[1].X + Points[2].X)/3f;
            double cy = (Points[0].Y + Points[1].Y + Points[2].Y)/3f;
            return new TriangulationPoint(cx, cy);
        }

        /// <summary>
        /// Get the index of the neighbor that shares this edge (or -1 if it isn't shared)
        /// </summary>
        /// <returns>index of the shared edge or -1 if edge isn't shared</returns>
        public int EdgeIndex(TriangulationPoint p1, TriangulationPoint p2)
        {
            int i1 = Points.IndexOf(p1);
            int i2 = Points.IndexOf(p2);

            // Points of this triangle in the edge p1-p2
            bool a = (i1 == 0 || i2 == 0);
            bool b = (i1 == 1 || i2 == 1);
            bool c = (i1 == 2 || i2 == 2);

            if (b && c) return 0;
            if (a && c) return 1;
            if (a && b) return 2;
            return -1;
        }

        public bool GetConstrainedEdgeCCW(TriangulationPoint p)
        {
            return EdgeIsConstrained[(IndexOf(p) + 2)%3];
        }

        public bool GetConstrainedEdgeCW(TriangulationPoint p)
        {
            return EdgeIsConstrained[(IndexOf(p) + 1)%3];
        }

        public bool GetConstrainedEdgeAcross(TriangulationPoint p)
        {
            return EdgeIsConstrained[IndexOf(p)];
        }

        public void SetConstrainedEdgeCCW(TriangulationPoint p, bool ce)
        {
            EdgeIsConstrained[(IndexOf(p) + 2)%3] = ce;
        }

        public void SetConstrainedEdgeCW(TriangulationPoint p, bool ce)
        {
            EdgeIsConstrained[(IndexOf(p) + 1)%3] = ce;
        }

        public void SetConstrainedEdgeAcross(TriangulationPoint p, bool ce)
        {
            EdgeIsConstrained[IndexOf(p)] = ce;
        }

        public bool GetDelaunayEdgeCCW(TriangulationPoint p)
        {
            return EdgeIsDelaunay[(IndexOf(p) + 2)%3];
        }

        public bool GetDelaunayEdgeCW(TriangulationPoint p)
        {
            return EdgeIsDelaunay[(IndexOf(p) + 1)%3];
        }

        public bool GetDelaunayEdgeAcross(TriangulationPoint p)
        {
            return EdgeIsDelaunay[IndexOf(p)];
        }

        public void SetDelaunayEdgeCCW(TriangulationPoint p, bool ce)
        {
            EdgeIsDelaunay[(IndexOf(p) + 2)%3] = ce;
        }

        public void SetDelaunayEdgeCW(TriangulationPoint p, bool ce)
        {
            EdgeIsDelaunay[(IndexOf(p) + 1)%3] = ce;
        }

        public void SetDelaunayEdgeAcross(TriangulationPoint p, bool ce)
        {
            EdgeIsDelaunay[IndexOf(p)] = ce;
        }
    }
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Instructor / Trainer Alura Cursos Online
Brazil Brazil

Comments and Discussions