Click here to Skip to main content
15,895,746 members
Articles / Mobile Apps / Windows Phone 7

Windows Phone: Are you Game? Part 1

Rate me:
Please Sign up or sign in to vote.
4.77/5 (18 votes)
12 Nov 2011CPOL9 min read 46.3K   693   36  
Introduction to XNA game development for Windows Phone - Includes XNAImage, image manipulation for XNA
/*
* Farseer Physics Engine based on Box2D.XNA port:
* Copyright (c) 2010 Ian Qvist
* 
* Box2D.XNA port of Box2D:
* Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
*
* Original source Box2D:
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com 
* 
* This software is provided 'as-is', without any express or implied 
* warranty.  In no event will the authors be held liable for any damages 
* arising from the use of this software. 
* Permission is granted to anyone to use this software for any purpose, 
* including commercial applications, and to alter it and redistribute it 
* freely, subject to the following restrictions: 
* 1. The origin of this software must not be misrepresented; you must not 
* claim that you wrote the original software. If you use this software 
* in a product, an acknowledgment in the product documentation would be 
* appreciated but is not required. 
* 2. Altered source versions must be plainly marked as such, and must not be 
* misrepresented as being the original software. 
* 3. This notice may not be removed or altered from any source distribution. 
*/

using System;
using System.Diagnostics;
using FarseerPhysics.Common;
using Microsoft.Xna.Framework;

namespace FarseerPhysics.Collision
{
    /// <summary>
    /// Input parameters for CalculateTimeOfImpact
    /// </summary>
    public class TOIInput
    {
        public DistanceProxy ProxyA = new DistanceProxy();
        public DistanceProxy ProxyB = new DistanceProxy();
        public Sweep SweepA;
        public Sweep SweepB;
        public float TMax; // defines sweep interval [0, tMax]
    }

    public enum TOIOutputState
    {
        Unknown,
        Failed,
        Overlapped,
        Touching,
        Seperated,
    }

    public struct TOIOutput
    {
        public TOIOutputState State;
        public float T;
    }

    public enum SeparationFunctionType
    {
        Points,
        FaceA,
        FaceB
    }

    public static class SeparationFunction
    {
        private static Vector2 _axis;
        private static Vector2 _localPoint;
        private static DistanceProxy _proxyA = new DistanceProxy();
        private static DistanceProxy _proxyB = new DistanceProxy();
        private static Sweep _sweepA, _sweepB;
        private static SeparationFunctionType _type;

        public static void Set(ref SimplexCache cache,
                               DistanceProxy proxyA, ref Sweep sweepA,
                               DistanceProxy proxyB, ref Sweep sweepB,
                               float t1)
        {
            _localPoint = Vector2.Zero;
            _proxyA = proxyA;
            _proxyB = proxyB;
            int count = cache.Count;
            Debug.Assert(0 < count && count < 3);

            _sweepA = sweepA;
            _sweepB = sweepB;

            Transform xfA, xfB;
            _sweepA.GetTransform(out xfA, t1);
            _sweepB.GetTransform(out xfB, t1);

            if (count == 1)
            {
                _type = SeparationFunctionType.Points;
                Vector2 localPointA = _proxyA.Vertices[cache.IndexA[0]];
                Vector2 localPointB = _proxyB.Vertices[cache.IndexB[0]];
                Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA);
                Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB);
                _axis = pointB - pointA;
                _axis.Normalize();
                return;
            }
            else if (cache.IndexA[0] == cache.IndexA[1])
            {
                // Two points on B and one on A.
                _type = SeparationFunctionType.FaceB;
                Vector2 localPointB1 = proxyB.Vertices[cache.IndexB[0]];
                Vector2 localPointB2 = proxyB.Vertices[cache.IndexB[1]];

                Vector2 a = localPointB2 - localPointB1;
                _axis = new Vector2(a.Y, -a.X);
                _axis.Normalize();
                Vector2 normal = MathUtils.Multiply(ref xfB.R, _axis);

                _localPoint = 0.5f * (localPointB1 + localPointB2);
                Vector2 pointB = MathUtils.Multiply(ref xfB, _localPoint);

                Vector2 localPointA = proxyA.Vertices[cache.IndexA[0]];
                Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA);

                float s = Vector2.Dot(pointA - pointB, normal);
                if (s < 0.0f)
                {
                    _axis = -_axis;
                    s = -s;
                }
                return;
            }
            else
            {
                // Two points on A and one or two points on B.
                _type = SeparationFunctionType.FaceA;
                Vector2 localPointA1 = _proxyA.Vertices[cache.IndexA[0]];
                Vector2 localPointA2 = _proxyA.Vertices[cache.IndexA[1]];

                Vector2 a = localPointA2 - localPointA1;
                _axis = new Vector2(a.Y, -a.X);
                _axis.Normalize();
                Vector2 normal = MathUtils.Multiply(ref xfA.R, _axis);

                _localPoint = 0.5f * (localPointA1 + localPointA2);
                Vector2 pointA = MathUtils.Multiply(ref xfA, _localPoint);

                Vector2 localPointB = _proxyB.Vertices[cache.IndexB[0]];
                Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB);

                float s = Vector2.Dot(pointB - pointA, normal);
                if (s < 0.0f)
                {
                    _axis = -_axis;
                    s = -s;
                }
                return;
            }
        }

        public static float FindMinSeparation(out int indexA, out int indexB, float t)
        {
            Transform xfA, xfB;
            _sweepA.GetTransform(out xfA, t);
            _sweepB.GetTransform(out xfB, t);

            switch (_type)
            {
                case SeparationFunctionType.Points:
                    {
                        Vector2 axisA = MathUtils.MultiplyT(ref xfA.R, _axis);
                        Vector2 axisB = MathUtils.MultiplyT(ref xfB.R, -_axis);

                        indexA = _proxyA.GetSupport(axisA);
                        indexB = _proxyB.GetSupport(axisB);

                        Vector2 localPointA = _proxyA.Vertices[indexA];
                        Vector2 localPointB = _proxyB.Vertices[indexB];

                        Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA);
                        Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB);

                        float separation = Vector2.Dot(pointB - pointA, _axis);
                        return separation;
                    }

                case SeparationFunctionType.FaceA:
                    {
                        Vector2 normal = MathUtils.Multiply(ref xfA.R, _axis);
                        Vector2 pointA = MathUtils.Multiply(ref xfA, _localPoint);

                        Vector2 axisB = MathUtils.MultiplyT(ref xfB.R, -normal);

                        indexA = -1;
                        indexB = _proxyB.GetSupport(axisB);

                        Vector2 localPointB = _proxyB.Vertices[indexB];
                        Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB);

                        float separation = Vector2.Dot(pointB - pointA, normal);
                        return separation;
                    }

                case SeparationFunctionType.FaceB:
                    {
                        Vector2 normal = MathUtils.Multiply(ref xfB.R, _axis);
                        Vector2 pointB = MathUtils.Multiply(ref xfB, _localPoint);

                        Vector2 axisA = MathUtils.MultiplyT(ref xfA.R, -normal);

                        indexB = -1;
                        indexA = _proxyA.GetSupport(axisA);

                        Vector2 localPointA = _proxyA.Vertices[indexA];
                        Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA);

                        float separation = Vector2.Dot(pointA - pointB, normal);
                        return separation;
                    }

                default:
                    Debug.Assert(false);
                    indexA = -1;
                    indexB = -1;
                    return 0.0f;
            }
        }

        public static float Evaluate(int indexA, int indexB, float t)
        {
            Transform xfA, xfB;
            _sweepA.GetTransform(out xfA, t);
            _sweepB.GetTransform(out xfB, t);

            switch (_type)
            {
                case SeparationFunctionType.Points:
                    {
                        Vector2 axisA = MathUtils.MultiplyT(ref xfA.R, _axis);
                        Vector2 axisB = MathUtils.MultiplyT(ref xfB.R, -_axis);

                        Vector2 localPointA = _proxyA.Vertices[indexA];
                        Vector2 localPointB = _proxyB.Vertices[indexB];

                        Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA);
                        Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB);
                        float separation = Vector2.Dot(pointB - pointA, _axis);

                        return separation;
                    }

                case SeparationFunctionType.FaceA:
                    {
                        Vector2 normal = MathUtils.Multiply(ref xfA.R, _axis);
                        Vector2 pointA = MathUtils.Multiply(ref xfA, _localPoint);

                        Vector2 axisB = MathUtils.MultiplyT(ref xfB.R, -normal);

                        Vector2 localPointB = _proxyB.Vertices[indexB];
                        Vector2 pointB = MathUtils.Multiply(ref xfB, localPointB);

                        float separation = Vector2.Dot(pointB - pointA, normal);
                        return separation;
                    }

                case SeparationFunctionType.FaceB:
                    {
                        Vector2 normal = MathUtils.Multiply(ref xfB.R, _axis);
                        Vector2 pointB = MathUtils.Multiply(ref xfB, _localPoint);

                        Vector2 axisA = MathUtils.MultiplyT(ref xfA.R, -normal);

                        Vector2 localPointA = _proxyA.Vertices[indexA];
                        Vector2 pointA = MathUtils.Multiply(ref xfA, localPointA);

                        float separation = Vector2.Dot(pointA - pointB, normal);
                        return separation;
                    }

                default:
                    Debug.Assert(false);
                    return 0.0f;
            }
        }
    }

    public static class TimeOfImpact
    {
        // CCD via the local separating axis method. This seeks progression
        // by computing the largest time at which separation is maintained.

        public static int TOICalls, TOIIters, TOIMaxIters;
        public static int TOIRootIters, TOIMaxRootIters;
        private static DistanceInput _distanceInput = new DistanceInput();

        /// <summary>
        /// Compute the upper bound on time before two shapes penetrate. Time is represented as
        /// a fraction between [0,tMax]. This uses a swept separating axis and may miss some intermediate,
        /// non-tunneling collision. If you change the time interval, you should call this function
        /// again.
        /// Note: use Distance() to compute the contact point and normal at the time of impact.
        /// </summary>
        /// <param name="output">The output.</param>
        /// <param name="input">The input.</param>
        public static void CalculateTimeOfImpact(out TOIOutput output, TOIInput input)
        {
            ++TOICalls;

            output = new TOIOutput();
            output.State = TOIOutputState.Unknown;
            output.T = input.TMax;

            Sweep sweepA = input.SweepA;
            Sweep sweepB = input.SweepB;

            // Large rotations can make the root finder fail, so we normalize the
            // sweep angles.
            sweepA.Normalize();
            sweepB.Normalize();

            float tMax = input.TMax;

            float totalRadius = input.ProxyA.Radius + input.ProxyB.Radius;
            float target = Math.Max(Settings.LinearSlop, totalRadius - 3.0f * Settings.LinearSlop);
            const float tolerance = 0.25f * Settings.LinearSlop;
            Debug.Assert(target > tolerance);

            float t1 = 0.0f;
            const int k_maxIterations = 20;
            int iter = 0;

            // Prepare input for distance query.
            SimplexCache cache;
            _distanceInput.ProxyA = input.ProxyA;
            _distanceInput.ProxyB = input.ProxyB;
            _distanceInput.UseRadii = false;

            // The outer loop progressively attempts to compute new separating axes.
            // This loop terminates when an axis is repeated (no progress is made).
            for (; ; )
            {
                Transform xfA, xfB;
                sweepA.GetTransform(out xfA, t1);
                sweepB.GetTransform(out xfB, t1);

                // Get the distance between shapes. We can also use the results
                // to get a separating axis.
                _distanceInput.TransformA = xfA;
                _distanceInput.TransformB = xfB;
                DistanceOutput distanceOutput;
                Distance.ComputeDistance(out distanceOutput, out cache, _distanceInput);

                // If the shapes are overlapped, we give up on continuous collision.
                if (distanceOutput.Distance <= 0.0f)
                {
                    // Failure!
                    output.State = TOIOutputState.Overlapped;
                    output.T = 0.0f;
                    break;
                }

                if (distanceOutput.Distance < target + tolerance)
                {
                    // Victory!
                    output.State = TOIOutputState.Touching;
                    output.T = t1;
                    break;
                }

                SeparationFunction.Set(ref cache, input.ProxyA, ref sweepA, input.ProxyB, ref sweepB, t1);

                // Compute the TOI on the separating axis. We do this by successively
                // resolving the deepest point. This loop is bounded by the number of vertices.
                bool done = false;
                float t2 = tMax;
                int pushBackIter = 0;
                for (; ; )
                {
                    // Find the deepest point at t2. Store the witness point indices.
                    int indexA, indexB;
                    float s2 = SeparationFunction.FindMinSeparation(out indexA, out indexB, t2);

                    // Is the final configuration separated?
                    if (s2 > target + tolerance)
                    {
                        // Victory!
                        output.State = TOIOutputState.Seperated;
                        output.T = tMax;
                        done = true;
                        break;
                    }

                    // Has the separation reached tolerance?
                    if (s2 > target - tolerance)
                    {
                        // Advance the sweeps
                        t1 = t2;
                        break;
                    }

                    // Compute the initial separation of the witness points.
                    float s1 = SeparationFunction.Evaluate(indexA, indexB, t1);

                    // Check for initial overlap. This might happen if the root finder
                    // runs out of iterations.
                    if (s1 < target - tolerance)
                    {
                        output.State = TOIOutputState.Failed;
                        output.T = t1;
                        done = true;
                        break;
                    }

                    // Check for touching
                    if (s1 <= target + tolerance)
                    {
                        // Victory! t1 should hold the TOI (could be 0.0).
                        output.State = TOIOutputState.Touching;
                        output.T = t1;
                        done = true;
                        break;
                    }

                    // Compute 1D root of: f(x) - target = 0
                    int rootIterCount = 0;
                    float a1 = t1, a2 = t2;
                    for (; ; )
                    {
                        // Use a mix of the secant rule and bisection.
                        float t;
                        if ((rootIterCount & 1) != 0)
                        {
                            // Secant rule to improve convergence.
                            t = a1 + (target - s1) * (a2 - a1) / (s2 - s1);
                        }
                        else
                        {
                            // Bisection to guarantee progress.
                            t = 0.5f * (a1 + a2);
                        }

                        float s = SeparationFunction.Evaluate(indexA, indexB, t);

                        if (Math.Abs(s - target) < tolerance)
                        {
                            // t2 holds a tentative value for t1
                            t2 = t;
                            break;
                        }

                        // Ensure we continue to bracket the root.
                        if (s > target)
                        {
                            a1 = t;
                            s1 = s;
                        }
                        else
                        {
                            a2 = t;
                            s2 = s;
                        }

                        ++rootIterCount;
                        ++TOIRootIters;

                        if (rootIterCount == 50)
                        {
                            break;
                        }
                    }

                    TOIMaxRootIters = Math.Max(TOIMaxRootIters, rootIterCount);

                    ++pushBackIter;

                    if (pushBackIter == Settings.MaxPolygonVertices)
                    {
                        break;
                    }
                }

                ++iter;
                ++TOIIters;

                if (done)
                {
                    break;
                }

                if (iter == k_maxIterations)
                {
                    // Root finder got stuck. Semi-victory.
                    output.State = TOIOutputState.Failed;
                    output.T = t1;
                    break;
                }
            }

            TOIMaxIters = Math.Max(TOIMaxIters, iter);
        }
    }
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Architect Sea Surveillance AS
Norway Norway
Chief Architect - Sea Surveillance AS.

Specializing in integrated operations and high performance computing solutions.

I’ve been fooling around with computers since the early eighties, I’ve even done work on CP/M and MP/M.

Wrote my first “real” program on a BBC micro model B based on a series in a magazine at that time. It was fun and I got hooked on this thing called programming ...

A few Highlights:

  • High performance application server development
  • Model Driven Architecture and Code generators
  • Real-Time Distributed Solutions
  • C, C++, C#, Java, TSQL, PL/SQL, Delphi, ActionScript, Perl, Rexx
  • Microsoft SQL Server, Oracle RDBMS, IBM DB2, PostGreSQL
  • AMQP, Apache qpid, RabbitMQ, Microsoft Message Queuing, IBM WebSphereMQ, Oracle TuxidoMQ
  • Oracle WebLogic, IBM WebSphere
  • Corba, COM, DCE, WCF
  • AspenTech InfoPlus.21(IP21), OsiSoft PI


More information about what I do for a living can be found at: harlinn.com or LinkedIn

You can contact me at espen@harlinn.no

Comments and Discussions