Click here to Skip to main content
15,886,362 members
Articles / Mobile Apps / Windows Phone 7

Windows Phone: Are you Game? Part 1

Rate me:
Please Sign up or sign in to vote.
4.77/5 (18 votes)
12 Nov 2011CPOL9 min read 46.1K   693   36  
Introduction to XNA game development for Windows Phone - Includes XNAImage, image manipulation for XNA
/*
 * C# Version Ported by Matt Bettcher and Ian Qvist 2009-2010
 * 
 * Original C++ Version Copyright (c) 2007 Eric Jordan
 *
 * This software is provided 'as-is', without any express or implied
 * warranty.  In no event will the authors be held liable for any damages
 * arising from the use of this software.
 * Permission is granted to anyone to use this software for any purpose,
 * including commercial applications, and to alter it and redistribute it
 * freely, subject to the following restrictions:
 * 1. The origin of this software must not be misrepresented; you must not
 * claim that you wrote the original software. If you use this software
 * in a product, an acknowledgment in the product documentation would be
 * appreciated but is not required.
 * 2. Altered source versions must be plainly marked as such, and must not be
 * misrepresented as being the original software.
 * 3. This notice may not be removed or altered from any source distribution.
 */

using System;
using System.Collections.Generic;
using FarseerPhysics.Common.PolygonManipulation;
using Microsoft.Xna.Framework;

namespace FarseerPhysics.Common.Decomposition
{
    /// <summary>
    /// Ported from jBox2D. Original author: ewjordan 
    /// Triangulates a polygon using simple ear-clipping algorithm.
    /// 
    /// Only works on simple polygons.
    /// 
    /// Triangles may be degenerate, especially if you have identical points
    /// in the input to the algorithm.  Check this before you use them.
    /// </summary>
    public static class EarclipDecomposer
    {
        //box2D rev 32 - for details, see http://www.box2d.org/forum/viewtopic.php?f=4&t=83&start=50

        private const float Tol = .001f;

        /// <summary>
        /// Decomposes a non-convex polygon into a number of convex polygons, up
        /// to maxPolys (remaining pieces are thrown out).
        ///
        /// Each resulting polygon will have no more than Settings.MaxPolygonVertices
        /// vertices.
        /// 
        /// Warning: Only works on simple polygons
        /// </summary>
        /// <param name="vertices">The vertices.</param>
        /// <returns></returns>
        public static List<Vertices> ConvexPartition(Vertices vertices)
        {
            return ConvexPartition(vertices, int.MaxValue, 0);
        }

        /// <summary>
        /// Decomposes a non-convex polygon into a number of convex polygons, up
        /// to maxPolys (remaining pieces are thrown out).
        /// Each resulting polygon will have no more than Settings.MaxPolygonVertices
        /// vertices.
        /// Warning: Only works on simple polygons
        /// </summary>
        /// <param name="vertices">The vertices.</param>
        /// <param name="maxPolys">The maximum number of polygons.</param>
        /// <param name="tolerance">The tolerance.</param>
        /// <returns></returns>
        public static List<Vertices> ConvexPartition(Vertices vertices, int maxPolys, float tolerance)
        {
            if (vertices.Count < 3)
                return new List<Vertices> { vertices };
            /*
            if (vertices.IsConvex() && vertices.Count <= Settings.MaxPolygonVertices)
            {
                if (vertices.IsCounterClockWise())
                {
                    Vertices tempP = new Vertices(vertices);
                    tempP.Reverse();
                    tempP = SimplifyTools.CollinearSimplify(tempP);
                    tempP.ForceCounterClockWise();
                    return new List<Vertices> { tempP };
                }
                vertices = SimplifyTools.CollinearSimplify(vertices);
                vertices.ForceCounterClockWise();
                return new List<Vertices> { vertices };
            }
            */
            List<Triangle> triangulated;

            if (vertices.IsCounterClockWise())
            {
                Vertices tempP = new Vertices(vertices);
                tempP.Reverse();
                triangulated = TriangulatePolygon(tempP);
            }
            else
            {
                triangulated = TriangulatePolygon(vertices);
            }
            if (triangulated.Count < 1)
            {
                //Still no luck?  Oh well...
                throw new Exception("Can't triangulate your polygon.");
            }

            List<Vertices> polygonizedTriangles = PolygonizeTriangles(triangulated, maxPolys, tolerance);

            //The polygonized triangles are not guaranteed to be without collinear points. We remove
            //them to be sure.
            for (int i = 0; i < polygonizedTriangles.Count; i++)
            {
                polygonizedTriangles[i] = SimplifyTools.CollinearSimplify(polygonizedTriangles[i], 0);
            }

            //Remove empty vertice collections
            for (int i = polygonizedTriangles.Count - 1; i >= 0; i--)
            {
                if (polygonizedTriangles[i].Count == 0)
                    polygonizedTriangles.RemoveAt(i);
            }

            return polygonizedTriangles;
        }

        /// <summary>
        /// Turns a list of triangles into a list of convex polygons. Very simple
        /// method - start with a seed triangle, keep adding triangles to it until
        /// you can't add any more without making the polygon non-convex.
        ///
        /// Returns an integer telling how many polygons were created.  Will fill
        /// polys array up to polysLength entries, which may be smaller or larger
        /// than the return value.
        /// 
        /// Takes O(N///P) where P is the number of resultant polygons, N is triangle
        /// count.
        /// 
        /// The final polygon list will not necessarily be minimal, though in
        /// practice it works fairly well.
        /// </summary>
        /// <param name="triangulated">The triangulated.</param>
        ///<param name="maxPolys">The maximun number of polygons</param>
        ///<param name="tolerance">The tolerance</param>
        ///<returns></returns>
        public static List<Vertices> PolygonizeTriangles(List<Triangle> triangulated, int maxPolys, float tolerance)
        {
            List<Vertices> polys = new List<Vertices>(50);

            int polyIndex = 0;

            if (triangulated.Count <= 0)
            {
                //return empty polygon list
                return polys;
            }

            bool[] covered = new bool[triangulated.Count];
            for (int i = 0; i < triangulated.Count; ++i)
            {
                covered[i] = false;

                //Check here for degenerate triangles
                if (((triangulated[i].X[0] == triangulated[i].X[1]) && (triangulated[i].Y[0] == triangulated[i].Y[1]))
                    ||
                    ((triangulated[i].X[1] == triangulated[i].X[2]) && (triangulated[i].Y[1] == triangulated[i].Y[2]))
                    ||
                    ((triangulated[i].X[0] == triangulated[i].X[2]) && (triangulated[i].Y[0] == triangulated[i].Y[2])))
                {
                    covered[i] = true;
                }
            }

            bool notDone = true;
            while (notDone)
            {
                int currTri = -1;
                for (int i = 0; i < triangulated.Count; ++i)
                {
                    if (covered[i])
                        continue;
                    currTri = i;
                    break;
                }
                if (currTri == -1)
                {
                    notDone = false;
                }
                else
                {
                    Vertices poly = new Vertices(3);

                    for (int i = 0; i < 3; i++)
                    {
                        poly.Add(new Vector2(triangulated[currTri].X[i], triangulated[currTri].Y[i]));
                    }

                    covered[currTri] = true;
                    int index = 0;
                    for (int i = 0; i < 2 * triangulated.Count; ++i, ++index)
                    {
                        while (index >= triangulated.Count) index -= triangulated.Count;
                        if (covered[index])
                        {
                            continue;
                        }
                        Vertices newP = AddTriangle(triangulated[index], poly);
                        if (newP == null)
                            continue; // is this right

                        if (newP.Count > Settings.MaxPolygonVertices)
                            continue;

                        if (newP.IsConvex())
                        {
                            //Or should it be IsUsable?  Maybe re-write IsConvex to apply the angle threshold from Box2d
                            poly = new Vertices(newP);
                            covered[index] = true;
                        }
                    }

                    //We have a maximum of polygons that we need to keep under.
                    if (polyIndex < maxPolys)
                    {
                        //SimplifyTools.MergeParallelEdges(poly, tolerance);

                        //If identical points are present, a triangle gets
                        //borked by the MergeParallelEdges function, hence
                        //the vertex number check
                        if (poly.Count >= 3)
                            polys.Add(new Vertices(poly));
                        //else
                        //    printf("Skipping corrupt poly\n");
                    }
                    if (poly.Count >= 3)
                        polyIndex++; //Must be outside (polyIndex < polysLength) test
                }
            }

            return polys;
        }

        /// <summary>
        /// Triangulates a polygon using simple ear-clipping algorithm. Returns
        /// size of Triangle array unless the polygon can't be triangulated.
        /// This should only happen if the polygon self-intersects,
        /// though it will not _always_ return null for a bad polygon - it is the
        /// caller's responsibility to check for self-intersection, and if it
        /// doesn't, it should at least check that the return value is non-null
        /// before using. You're warned!
        ///
        /// Triangles may be degenerate, especially if you have identical points
        /// in the input to the algorithm.  Check this before you use them.
        ///
        /// This is totally unoptimized, so for large polygons it should not be part
        /// of the simulation loop.
        ///
        /// Warning: Only works on simple polygons.
        /// </summary>
        /// <returns></returns>
        public static List<Triangle> TriangulatePolygon(Vertices vertices)
        {
            List<Triangle> results = new List<Triangle>();
            if (vertices.Count < 3)
                return new List<Triangle>();

            //Recurse and split on pinch points
            Vertices pA, pB;
            Vertices pin = new Vertices(vertices);
            if (ResolvePinchPoint(pin, out pA, out pB))
            {
                List<Triangle> mergeA = TriangulatePolygon(pA);
                List<Triangle> mergeB = TriangulatePolygon(pB);

                if (mergeA.Count == -1 || mergeB.Count == -1)
                    throw new Exception("Can't triangulate your polygon.");

                for (int i = 0; i < mergeA.Count; ++i)
                {
                    results.Add(new Triangle(mergeA[i]));
                }
                for (int i = 0; i < mergeB.Count; ++i)
                {
                    results.Add(new Triangle(mergeB[i]));
                }

                return results;
            }

            Triangle[] buffer = new Triangle[vertices.Count - 2];
            int bufferSize = 0;
            float[] xrem = new float[vertices.Count];
            float[] yrem = new float[vertices.Count];
            for (int i = 0; i < vertices.Count; ++i)
            {
                xrem[i] = vertices[i].X;
                yrem[i] = vertices[i].Y;
            }

            int vNum = vertices.Count;

            while (vNum > 3)
            {
                // Find an ear
                int earIndex = -1;
                float earMaxMinCross = -10.0f;
                for (int i = 0; i < vNum; ++i)
                {
                    if (IsEar(i, xrem, yrem, vNum))
                    {
                        int lower = Remainder(i - 1, vNum);
                        int upper = Remainder(i + 1, vNum);
                        Vector2 d1 = new Vector2(xrem[upper] - xrem[i], yrem[upper] - yrem[i]);
                        Vector2 d2 = new Vector2(xrem[i] - xrem[lower], yrem[i] - yrem[lower]);
                        Vector2 d3 = new Vector2(xrem[lower] - xrem[upper], yrem[lower] - yrem[upper]);

                        d1.Normalize();
                        d2.Normalize();
                        d3.Normalize();
                        float cross12;
                        MathUtils.Cross(ref d1, ref d2, out cross12);
                        cross12 = Math.Abs(cross12);

                        float cross23;
                        MathUtils.Cross(ref d2, ref d3, out cross23);
                        cross23 = Math.Abs(cross23);

                        float cross31;
                        MathUtils.Cross(ref d3, ref d1, out cross31);
                        cross31 = Math.Abs(cross31);

                        //Find the maximum minimum angle
                        float minCross = Math.Min(cross12, Math.Min(cross23, cross31));
                        if (minCross > earMaxMinCross)
                        {
                            earIndex = i;
                            earMaxMinCross = minCross;
                        }
                    }
                }

                // If we still haven't found an ear, we're screwed.
                // Note: sometimes this is happening because the
                // remaining points are collinear.  Really these
                // should just be thrown out without halting triangulation.
                if (earIndex == -1)
                {
                    for (int i = 0; i < bufferSize; i++)
                    {
                        results.Add(new Triangle(buffer[i]));
                    }

                    return results;
                }

                // Clip off the ear:
                // - remove the ear tip from the list

                --vNum;
                float[] newx = new float[vNum];
                float[] newy = new float[vNum];
                int currDest = 0;
                for (int i = 0; i < vNum; ++i)
                {
                    if (currDest == earIndex) ++currDest;
                    newx[i] = xrem[currDest];
                    newy[i] = yrem[currDest];
                    ++currDest;
                }

                // - add the clipped triangle to the triangle list
                int under = (earIndex == 0) ? (vNum) : (earIndex - 1);
                int over = (earIndex == vNum) ? 0 : (earIndex + 1);
                Triangle toAdd = new Triangle(xrem[earIndex], yrem[earIndex], xrem[over], yrem[over], xrem[under],
                                              yrem[under]);
                buffer[bufferSize] = toAdd;
                ++bufferSize;

                // - replace the old list with the new one
                xrem = newx;
                yrem = newy;
            }

            Triangle tooAdd = new Triangle(xrem[1], yrem[1], xrem[2], yrem[2], xrem[0], yrem[0]);
            buffer[bufferSize] = tooAdd;
            ++bufferSize;

            for (int i = 0; i < bufferSize; i++)
            {
                results.Add(new Triangle(buffer[i]));
            }

            return results;
        }

        /// <summary>
        /// Finds and fixes "pinch points," points where two polygon
        /// vertices are at the same point.
        /// 
        /// If a pinch point is found, pin is broken up into poutA and poutB
        /// and true is returned; otherwise, returns false.
        /// 
        /// Mostly for internal use.
        /// 
        /// O(N^2) time, which sucks...
        /// </summary>
        /// <param name="pin">The pin.</param>
        /// <param name="poutA">The pout A.</param>
        /// <param name="poutB">The pout B.</param>
        /// <returns></returns>
        private static bool ResolvePinchPoint(Vertices pin, out Vertices poutA, out Vertices poutB)
        {
            poutA = new Vertices();
            poutB = new Vertices();

            if (pin.Count < 3)
                return false;

            bool hasPinchPoint = false;
            int pinchIndexA = -1;
            int pinchIndexB = -1;
            for (int i = 0; i < pin.Count; ++i)
            {
                for (int j = i + 1; j < pin.Count; ++j)
                {
                    //Don't worry about pinch points where the points
                    //are actually just dupe neighbors
                    if (Math.Abs(pin[i].X - pin[j].X) < Tol && Math.Abs(pin[i].Y - pin[j].Y) < Tol && j != i + 1)
                    {
                        pinchIndexA = i;
                        pinchIndexB = j;
                        hasPinchPoint = true;
                        break;
                    }
                }
                if (hasPinchPoint) break;
            }
            if (hasPinchPoint)
            {
                int sizeA = pinchIndexB - pinchIndexA;
                if (sizeA == pin.Count) return false; //has dupe points at wraparound, not a problem here
                for (int i = 0; i < sizeA; ++i)
                {
                    int ind = Remainder(pinchIndexA + i, pin.Count); // is this right
                    poutA.Add(pin[ind]);
                }

                int sizeB = pin.Count - sizeA;
                for (int i = 0; i < sizeB; ++i)
                {
                    int ind = Remainder(pinchIndexB + i, pin.Count); // is this right    
                    poutB.Add(pin[ind]);
                }
            }
            return hasPinchPoint;
        }

        /// <summary>
        /// Fix for obnoxious behavior for the % operator for negative numbers...
        /// </summary>
        /// <param name="x">The x.</param>
        /// <param name="modulus">The modulus.</param>
        /// <returns></returns>
        private static int Remainder(int x, int modulus)
        {
            int rem = x % modulus;
            while (rem < 0)
            {
                rem += modulus;
            }
            return rem;
        }

        private static Vertices AddTriangle(Triangle t, Vertices vertices)
        {
            // First, find vertices that connect
            int firstP = -1;
            int firstT = -1;
            int secondP = -1;
            int secondT = -1;
            for (int i = 0; i < vertices.Count; i++)
            {
                if (t.X[0] == vertices[i].X && t.Y[0] == vertices[i].Y)
                {
                    if (firstP == -1)
                    {
                        firstP = i;
                        firstT = 0;
                    }
                    else
                    {
                        secondP = i;
                        secondT = 0;
                    }
                }
                else if (t.X[1] == vertices[i].X && t.Y[1] == vertices[i].Y)
                {
                    if (firstP == -1)
                    {
                        firstP = i;
                        firstT = 1;
                    }
                    else
                    {
                        secondP = i;
                        secondT = 1;
                    }
                }
                else if (t.X[2] == vertices[i].X && t.Y[2] == vertices[i].Y)
                {
                    if (firstP == -1)
                    {
                        firstP = i;
                        firstT = 2;
                    }
                    else
                    {
                        secondP = i;
                        secondT = 2;
                    }
                }
            }
            // Fix ordering if first should be last vertex of poly
            if (firstP == 0 && secondP == vertices.Count - 1)
            {
                firstP = vertices.Count - 1;
                secondP = 0;
            }

            // Didn't find it
            if (secondP == -1)
            {
                return null;
            }

            // Find tip index on triangle
            int tipT = 0;
            if (tipT == firstT || tipT == secondT)
                tipT = 1;
            if (tipT == firstT || tipT == secondT)
                tipT = 2;

            Vertices result = new Vertices(vertices.Count + 1);
            for (int i = 0; i < vertices.Count; i++)
            {
                result.Add(vertices[i]);

                if (i == firstP)
                    result.Add(new Vector2(t.X[tipT], t.Y[tipT]));
            }

            return result;
        }

        /// <summary>
        /// Checks if vertex i is the tip of an ear in polygon defined by xv[] and
        /// yv[].
        ///
        /// Assumes clockwise orientation of polygon...ick
        /// </summary>
        /// <param name="i">The i.</param>
        /// <param name="xv">The xv.</param>
        /// <param name="yv">The yv.</param>
        /// <param name="xvLength">Length of the xv.</param>
        /// <returns>
        /// 	<c>true</c> if the specified i is ear; otherwise, <c>false</c>.
        /// </returns>
        private static bool IsEar(int i, float[] xv, float[] yv, int xvLength)
        {
            float dx0, dy0, dx1, dy1;
            if (i >= xvLength || i < 0 || xvLength < 3)
            {
                return false;
            }
            int upper = i + 1;
            int lower = i - 1;
            if (i == 0)
            {
                dx0 = xv[0] - xv[xvLength - 1];
                dy0 = yv[0] - yv[xvLength - 1];
                dx1 = xv[1] - xv[0];
                dy1 = yv[1] - yv[0];
                lower = xvLength - 1;
            }
            else if (i == xvLength - 1)
            {
                dx0 = xv[i] - xv[i - 1];
                dy0 = yv[i] - yv[i - 1];
                dx1 = xv[0] - xv[i];
                dy1 = yv[0] - yv[i];
                upper = 0;
            }
            else
            {
                dx0 = xv[i] - xv[i - 1];
                dy0 = yv[i] - yv[i - 1];
                dx1 = xv[i + 1] - xv[i];
                dy1 = yv[i + 1] - yv[i];
            }
            float cross = dx0 * dy1 - dx1 * dy0;
            if (cross > 0)
                return false;
            Triangle myTri = new Triangle(xv[i], yv[i], xv[upper], yv[upper],
                                          xv[lower], yv[lower]);
            for (int j = 0; j < xvLength; ++j)
            {
                if (j == i || j == lower || j == upper)
                    continue;
                if (myTri.IsInside(xv[j], yv[j]))
                    return false;
            }
            return true;
        }
    }

    public class Triangle
    {
        public float[] X;
        public float[] Y;

        //Constructor automatically fixes orientation to ccw
        public Triangle(float x1, float y1, float x2, float y2, float x3, float y3)
        {
            X = new float[3];
            Y = new float[3];
            float dx1 = x2 - x1;
            float dx2 = x3 - x1;
            float dy1 = y2 - y1;
            float dy2 = y3 - y1;
            float cross = dx1 * dy2 - dx2 * dy1;
            bool ccw = (cross > 0);
            if (ccw)
            {
                X[0] = x1;
                X[1] = x2;
                X[2] = x3;
                Y[0] = y1;
                Y[1] = y2;
                Y[2] = y3;
            }
            else
            {
                X[0] = x1;
                X[1] = x3;
                X[2] = x2;
                Y[0] = y1;
                Y[1] = y3;
                Y[2] = y2;
            }
        }

        public Triangle(Triangle t)
        {
            X = new float[3];
            Y = new float[3];

            X[0] = t.X[0];
            X[1] = t.X[1];
            X[2] = t.X[2];
            Y[0] = t.Y[0];
            Y[1] = t.Y[1];
            Y[2] = t.Y[2];
        }

        public bool IsInside(float x, float y)
        {
            if (x < X[0] && x < X[1] && x < X[2]) return false;
            if (x > X[0] && x > X[1] && x > X[2]) return false;
            if (y < Y[0] && y < Y[1] && y < Y[2]) return false;
            if (y > Y[0] && y > Y[1] && y > Y[2]) return false;

            float vx2 = x - X[0];
            float vy2 = y - Y[0];
            float vx1 = X[1] - X[0];
            float vy1 = Y[1] - Y[0];
            float vx0 = X[2] - X[0];
            float vy0 = Y[2] - Y[0];

            float dot00 = vx0 * vx0 + vy0 * vy0;
            float dot01 = vx0 * vx1 + vy0 * vy1;
            float dot02 = vx0 * vx2 + vy0 * vy2;
            float dot11 = vx1 * vx1 + vy1 * vy1;
            float dot12 = vx1 * vx2 + vy1 * vy2;
            float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01);
            float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
            float v = (dot00 * dot12 - dot01 * dot02) * invDenom;

            return ((u > 0) && (v > 0) && (u + v < 1));
        }
    }
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Architect Sea Surveillance AS
Norway Norway
Chief Architect - Sea Surveillance AS.

Specializing in integrated operations and high performance computing solutions.

I’ve been fooling around with computers since the early eighties, I’ve even done work on CP/M and MP/M.

Wrote my first “real” program on a BBC micro model B based on a series in a magazine at that time. It was fun and I got hooked on this thing called programming ...

A few Highlights:

  • High performance application server development
  • Model Driven Architecture and Code generators
  • Real-Time Distributed Solutions
  • C, C++, C#, Java, TSQL, PL/SQL, Delphi, ActionScript, Perl, Rexx
  • Microsoft SQL Server, Oracle RDBMS, IBM DB2, PostGreSQL
  • AMQP, Apache qpid, RabbitMQ, Microsoft Message Queuing, IBM WebSphereMQ, Oracle TuxidoMQ
  • Oracle WebLogic, IBM WebSphere
  • Corba, COM, DCE, WCF
  • AspenTech InfoPlus.21(IP21), OsiSoft PI


More information about what I do for a living can be found at: harlinn.com or LinkedIn

You can contact me at espen@harlinn.no

Comments and Discussions