Click here to Skip to main content
15,881,812 members
Articles / Web Development / HTML

Integrating Crash Reporting into Your Application - A Beginners Tutorial

Rate me:
Please Sign up or sign in to vote.
4.91/5 (30 votes)
5 Feb 2012CPOL12 min read 90.2K   4.4K   170  
This article shows how to use CrashRpt error reporting library with an MFC application
/*
 * jddctmgr.c
 *
 * Copyright (C) 1994-1996, Thomas G. Lane.
 * Modified 2002-2010 by Guido Vollbeding.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains the inverse-DCT management logic.
 * This code selects a particular IDCT implementation to be used,
 * and it performs related housekeeping chores.  No code in this file
 * is executed per IDCT step, only during output pass setup.
 *
 * Note that the IDCT routines are responsible for performing coefficient
 * dequantization as well as the IDCT proper.  This module sets up the
 * dequantization multiplier table needed by the IDCT routine.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h"		/* Private declarations for DCT subsystem */


/*
 * The decompressor input side (jdinput.c) saves away the appropriate
 * quantization table for each component at the start of the first scan
 * involving that component.  (This is necessary in order to correctly
 * decode files that reuse Q-table slots.)
 * When we are ready to make an output pass, the saved Q-table is converted
 * to a multiplier table that will actually be used by the IDCT routine.
 * The multiplier table contents are IDCT-method-dependent.  To support
 * application changes in IDCT method between scans, we can remake the
 * multiplier tables if necessary.
 * In buffered-image mode, the first output pass may occur before any data
 * has been seen for some components, and thus before their Q-tables have
 * been saved away.  To handle this case, multiplier tables are preset
 * to zeroes; the result of the IDCT will be a neutral gray level.
 */


/* Private subobject for this module */

typedef struct {
  struct jpeg_inverse_dct pub;	/* public fields */

  /* This array contains the IDCT method code that each multiplier table
   * is currently set up for, or -1 if it's not yet set up.
   * The actual multiplier tables are pointed to by dct_table in the
   * per-component comp_info structures.
   */
  int cur_method[MAX_COMPONENTS];
} my_idct_controller;

typedef my_idct_controller * my_idct_ptr;


/* Allocated multiplier tables: big enough for any supported variant */

typedef union {
  ISLOW_MULT_TYPE islow_array[DCTSIZE2];
#ifdef DCT_IFAST_SUPPORTED
  IFAST_MULT_TYPE ifast_array[DCTSIZE2];
#endif
#ifdef DCT_FLOAT_SUPPORTED
  FLOAT_MULT_TYPE float_array[DCTSIZE2];
#endif
} multiplier_table;


/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
 * so be sure to compile that code if either ISLOW or SCALING is requested.
 */
#ifdef DCT_ISLOW_SUPPORTED
#define PROVIDE_ISLOW_TABLES
#else
#ifdef IDCT_SCALING_SUPPORTED
#define PROVIDE_ISLOW_TABLES
#endif
#endif


/*
 * Prepare for an output pass.
 * Here we select the proper IDCT routine for each component and build
 * a matching multiplier table.
 */

METHODDEF(void)
start_pass (j_decompress_ptr cinfo)
{
  my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
  int ci, i;
  jpeg_component_info *compptr;
  int method = 0;
  inverse_DCT_method_ptr method_ptr = NULL;
  JQUANT_TBL * qtbl;

  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    /* Select the proper IDCT routine for this component's scaling */
    switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) {
#ifdef IDCT_SCALING_SUPPORTED
    case ((1 << 8) + 1):
      method_ptr = jpeg_idct_1x1;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((2 << 8) + 2):
      method_ptr = jpeg_idct_2x2;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((3 << 8) + 3):
      method_ptr = jpeg_idct_3x3;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((4 << 8) + 4):
      method_ptr = jpeg_idct_4x4;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((5 << 8) + 5):
      method_ptr = jpeg_idct_5x5;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((6 << 8) + 6):
      method_ptr = jpeg_idct_6x6;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((7 << 8) + 7):
      method_ptr = jpeg_idct_7x7;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((9 << 8) + 9):
      method_ptr = jpeg_idct_9x9;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((10 << 8) + 10):
      method_ptr = jpeg_idct_10x10;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((11 << 8) + 11):
      method_ptr = jpeg_idct_11x11;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((12 << 8) + 12):
      method_ptr = jpeg_idct_12x12;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((13 << 8) + 13):
      method_ptr = jpeg_idct_13x13;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((14 << 8) + 14):
      method_ptr = jpeg_idct_14x14;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((15 << 8) + 15):
      method_ptr = jpeg_idct_15x15;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((16 << 8) + 16):
      method_ptr = jpeg_idct_16x16;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((16 << 8) + 8):
      method_ptr = jpeg_idct_16x8;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((14 << 8) + 7):
      method_ptr = jpeg_idct_14x7;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((12 << 8) + 6):
      method_ptr = jpeg_idct_12x6;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((10 << 8) + 5):
      method_ptr = jpeg_idct_10x5;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((8 << 8) + 4):
      method_ptr = jpeg_idct_8x4;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((6 << 8) + 3):
      method_ptr = jpeg_idct_6x3;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((4 << 8) + 2):
      method_ptr = jpeg_idct_4x2;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((2 << 8) + 1):
      method_ptr = jpeg_idct_2x1;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((8 << 8) + 16):
      method_ptr = jpeg_idct_8x16;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((7 << 8) + 14):
      method_ptr = jpeg_idct_7x14;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((6 << 8) + 12):
      method_ptr = jpeg_idct_6x12;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((5 << 8) + 10):
      method_ptr = jpeg_idct_5x10;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((4 << 8) + 8):
      method_ptr = jpeg_idct_4x8;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((3 << 8) + 6):
      method_ptr = jpeg_idct_3x6;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((2 << 8) + 4):
      method_ptr = jpeg_idct_2x4;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
    case ((1 << 8) + 2):
      method_ptr = jpeg_idct_1x2;
      method = JDCT_ISLOW;	/* jidctint uses islow-style table */
      break;
#endif
    case ((DCTSIZE << 8) + DCTSIZE):
      switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
      case JDCT_ISLOW:
	method_ptr = jpeg_idct_islow;
	method = JDCT_ISLOW;
	break;
#endif
#ifdef DCT_IFAST_SUPPORTED
      case JDCT_IFAST:
	method_ptr = jpeg_idct_ifast;
	method = JDCT_IFAST;
	break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
      case JDCT_FLOAT:
	method_ptr = jpeg_idct_float;
	method = JDCT_FLOAT;
	break;
#endif
      default:
	ERREXIT(cinfo, JERR_NOT_COMPILED);
	break;
      }
      break;
    default:
      ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
	       compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size);
      break;
    }
    idct->pub.inverse_DCT[ci] = method_ptr;
    /* Create multiplier table from quant table.
     * However, we can skip this if the component is uninteresting
     * or if we already built the table.  Also, if no quant table
     * has yet been saved for the component, we leave the
     * multiplier table all-zero; we'll be reading zeroes from the
     * coefficient controller's buffer anyway.
     */
    if (! compptr->component_needed || idct->cur_method[ci] == method)
      continue;
    qtbl = compptr->quant_table;
    if (qtbl == NULL)		/* happens if no data yet for component */
      continue;
    idct->cur_method[ci] = method;
    switch (method) {
#ifdef PROVIDE_ISLOW_TABLES
    case JDCT_ISLOW:
      {
	/* For LL&M IDCT method, multipliers are equal to raw quantization
	 * coefficients, but are stored as ints to ensure access efficiency.
	 */
	ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
	for (i = 0; i < DCTSIZE2; i++) {
	  ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
	}
      }
      break;
#endif
#ifdef DCT_IFAST_SUPPORTED
    case JDCT_IFAST:
      {
	/* For AA&N IDCT method, multipliers are equal to quantization
	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
	 *   scalefactor[0] = 1
	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
	 * For integer operation, the multiplier table is to be scaled by
	 * IFAST_SCALE_BITS.
	 */
	IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
#define CONST_BITS 14
	static const INT16 aanscales[DCTSIZE2] = {
	  /* precomputed values scaled up by 14 bits */
	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
	};
	SHIFT_TEMPS

	for (i = 0; i < DCTSIZE2; i++) {
	  ifmtbl[i] = (IFAST_MULT_TYPE)
	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
				  (INT32) aanscales[i]),
		    CONST_BITS-IFAST_SCALE_BITS);
	}
      }
      break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
    case JDCT_FLOAT:
      {
	/* For float AA&N IDCT method, multipliers are equal to quantization
	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
	 *   scalefactor[0] = 1
	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
	 * We apply a further scale factor of 1/8.
	 */
	FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
	int row, col;
	static const double aanscalefactor[DCTSIZE] = {
	  1.0, 1.387039845, 1.306562965, 1.175875602,
	  1.0, 0.785694958, 0.541196100, 0.275899379
	};

	i = 0;
	for (row = 0; row < DCTSIZE; row++) {
	  for (col = 0; col < DCTSIZE; col++) {
	    fmtbl[i] = (FLOAT_MULT_TYPE)
	      ((double) qtbl->quantval[i] *
	       aanscalefactor[row] * aanscalefactor[col] * 0.125);
	    i++;
	  }
	}
      }
      break;
#endif
    default:
      ERREXIT(cinfo, JERR_NOT_COMPILED);
      break;
    }
  }
}


/*
 * Initialize IDCT manager.
 */

GLOBAL(void)
jinit_inverse_dct (j_decompress_ptr cinfo)
{
  my_idct_ptr idct;
  int ci;
  jpeg_component_info *compptr;

  idct = (my_idct_ptr)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				SIZEOF(my_idct_controller));
  cinfo->idct = (struct jpeg_inverse_dct *) idct;
  idct->pub.start_pass = start_pass;

  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    /* Allocate and pre-zero a multiplier table for each component */
    compptr->dct_table =
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				  SIZEOF(multiplier_table));
    MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
    /* Mark multiplier table not yet set up for any method */
    idct->cur_method[ci] = -1;
  }
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Russian Federation Russian Federation
I am a software developer currently living in Tomsk, Russia. I received a PhD degree in Computer Science from Tomsk Polytechnic University in 2010. I have been professionally developing C/C++ and PHP software since 2005. I like contributing to open-source and writing programming articles for popular web resources, like CodeProject. Besides writing, I love skiing and watching Formula-1.

Comments and Discussions