Click here to Skip to main content
15,885,914 members
Articles / Programming Languages / Visual C++ 9.0

SFMT in Action: Part I – Generating a DLL Including SSE2 Support

Rate me:
Please Sign up or sign in to vote.
4.45/5 (4 votes)
28 Apr 2009CPOL22 min read 68.5K   741   21  
An approach for using the SFMT (SIMD-oriented Fast Mersenne Twister) random number generator algorithm.
/** 
 * @file  SFMT.c
 * @brief SIMD oriented Fast Mersenne Twister(SFMT)
 *
 * modified by Emre �zg�r �nce (emre_lineus@yahoo.com)
 *
 * Original implementation: 	
 * Mutsuo Saito (Hiroshima University) and Makoto Matsumoto (Hiroshima University)
 * Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
 * University. All rights reserved.
 * The (modified) BSD License is applied to this software, see Original License/LICENSE.txt
 */

#include <string.h>
#include <assert.h>
#include "SFMT.h"
#include "SFMT-params.h"

/*------------------------------------------------------
  128-bit SIMD data type for SSE2 or standard C
  ------------------------------------------------------*/
#if defined(HAVE_SSE2)
  #include <emmintrin.h>

/* 128-bit data structure */
union W128_T {
    __m128i si;
    uint32_t u[4];
};
/** 128-bit data type */
typedef union W128_T w128_t;

#else

/** 128-bit data structure */
struct W128_T {
    uint32_t u[4];
};
/** 128-bit data type */
typedef struct W128_T w128_t;

#endif

/*--------------------------------------
  FILE GLOBAL VARIABLES
  internal state, index counter and flag 
  --------------------------------------*/

/** the 128-bit internal state array */
static w128_t sfmt[N];
/** the 32bit integer pointer to the 128-bit internal state array */
static uint32_t *psfmt32 = &sfmt[0].u[0];
/** the 64bit integer pointer to the 128-bit internal state array */
static uint64_t *psfmt64 = (uint64_t *)&sfmt[0].u[0];
/** index counter to the 32-bit internal state array */
static int idx;
/** a flag: it is 0 if and only if the internal state is not yet
 * initialized. */
static int initialized = 0;
/** a parity check vector which certificate the period of 2^{MEXP} */
static uint32_t parity[4] = {PARITY1, PARITY2, PARITY3, PARITY4};

/*----------------
  STATIC FUNCTIONS
  ----------------*/
inline static int idxof(int i);
inline static void rshift128(w128_t *out,  w128_t const *in, int shift);
inline static void lshift128(w128_t *out,  w128_t const *in, int shift);
inline static void gen_rand_all(void);
inline static void gen_rand_array(w128_t *array, int size);
inline static uint32_t func1(uint32_t x);
inline static uint32_t func2(uint32_t x);
static void period_certification(void);

#if defined(HAVE_SSE2)
  #include "SFMT-sse2.h"
#endif


inline static int idxof(int i) {
    return i;
}

/**
 * This function simulates SIMD 128-bit right shift by the standard C.
 * The 128-bit integer given in in is shifted by (shift * 8) bits.
 * This function simulates the LITTLE ENDIAN SIMD.
 * @param out the output of this function
 * @param in the 128-bit data to be shifted
 * @param shift the shift value
 */
inline static void rshift128(w128_t *out, w128_t const *in, int shift) {
    uint64_t th, tl, oh, ol;

    th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
    tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);

    oh = th >> (shift * 8);
    ol = tl >> (shift * 8);
    ol |= th << (64 - shift * 8);
    out->u[1] = (uint32_t)(ol >> 32);
    out->u[0] = (uint32_t)ol;
    out->u[3] = (uint32_t)(oh >> 32);
    out->u[2] = (uint32_t)oh;
}

/**
 * This function simulates SIMD 128-bit left shift by the standard C.
 * The 128-bit integer given in in is shifted by (shift * 8) bits.
 * This function simulates the LITTLE ENDIAN SIMD.
 * @param out the output of this function
 * @param in the 128-bit data to be shifted
 * @param shift the shift value
 */
inline static void lshift128(w128_t *out, w128_t const *in, int shift) {
    uint64_t th, tl, oh, ol;

    th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
    tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);

    oh = th << (shift * 8);
    ol = tl << (shift * 8);
    oh |= tl >> (64 - shift * 8);
    out->u[1] = (uint32_t)(ol >> 32);
    out->u[0] = (uint32_t)ol;
    out->u[3] = (uint32_t)(oh >> 32);
    out->u[2] = (uint32_t)oh;
}

/**
 * This function represents the recursion formula.
 * @param r output
 * @param a a 128-bit part of the internal state array
 * @param b a 128-bit part of the internal state array
 * @param c a 128-bit part of the internal state array
 * @param d a 128-bit part of the internal state array
 */
#if (!defined(HAVE_SSE2))
inline static void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
				w128_t *d) {
    w128_t x;
    w128_t y;

    lshift128(&x, a, SL2);
    rshift128(&y, c, SR2);
    r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK1) ^ y.u[0] 
	^ (d->u[0] << SL1);
    r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK2) ^ y.u[1] 
	^ (d->u[1] << SL1);
    r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK3) ^ y.u[2] 
	^ (d->u[2] << SL1);
    r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK4) ^ y.u[3] 
	^ (d->u[3] << SL1);
}
#endif

#if (!defined(HAVE_SSE2))
/**
 * This function fills the internal state array with pseudorandom
 * integers.
 */
inline static void gen_rand_all(void) {
    int i;
    w128_t *r1, *r2;

    r1 = &sfmt[N - 2];
    r2 = &sfmt[N - 1];
    for (i = 0; i < N - POS1; i++) {
	do_recursion(&sfmt[i], &sfmt[i], &sfmt[i + POS1], r1, r2);
	r1 = r2;
	r2 = &sfmt[i];
    }
    for (; i < N; i++) {
	do_recursion(&sfmt[i], &sfmt[i], &sfmt[i + POS1 - N], r1, r2);
	r1 = r2;
	r2 = &sfmt[i];
    }
}

/**
 * This function fills the user-specified array with pseudorandom
 * integers.
 *
 * @param array an 128-bit array to be filled by pseudorandom numbers.  
 * @param size number of 128-bit pseudorandom numbers to be generated.
 */
inline static void gen_rand_array(w128_t *array, int size) {
    int i, j;
    w128_t *r1, *r2;

    r1 = &sfmt[N - 2];
    r2 = &sfmt[N - 1];
    for (i = 0; i < N - POS1; i++) {
	do_recursion(&array[i], &sfmt[i], &sfmt[i + POS1], r1, r2);
	r1 = r2;
	r2 = &array[i];
    }
    for (; i < N; i++) {
	do_recursion(&array[i], &sfmt[i], &array[i + POS1 - N], r1, r2);
	r1 = r2;
	r2 = &array[i];
    }
    for (; i < size - N; i++) {
	do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
	r1 = r2;
	r2 = &array[i];
    }
    for (j = 0; j < 2 * N - size; j++) {
	sfmt[j] = array[j + size - N];
    }
    for (; i < size; i++, j++) {
	do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
	r1 = r2;
	r2 = &array[i];
	sfmt[j] = array[i];
    }
}
#endif

/**
 * This function represents a function used in the initialization
 * by init_by_array
 * @param x 32-bit integer
 * @return 32-bit integer
 */
static uint32_t func1(uint32_t x) {
    return (x ^ (x >> 27)) * (uint32_t)1664525UL;
}

/**
 * This function represents a function used in the initialization
 * by init_by_array
 * @param x 32-bit integer
 * @return 32-bit integer
 */
static uint32_t func2(uint32_t x) {
    return (x ^ (x >> 27)) * (uint32_t)1566083941UL;
}

/**
 * This function certificate the period of 2^{MEXP}
 */
static void period_certification(void) {
    int inner = 0;
    int i, j;
    uint32_t work;

    for (i = 0; i < 4; i++)
	inner ^= psfmt32[idxof(i)] & parity[i];
    for (i = 16; i > 0; i >>= 1)
	inner ^= inner >> i;
    inner &= 1;
    /* check OK */
    if (inner == 1) {
	return;
    }
    /* check NG, and modification */
    for (i = 0; i < 4; i++) {
	work = 1;
	for (j = 0; j < 32; j++) {
	    if ((work & parity[i]) != 0) {
		psfmt32[idxof(i)] ^= work;
		return;
	    }
	    work = work << 1;
	}
    }
}

/*----------------
  PUBLIC FUNCTIONS
  ----------------*/
/**
 * This function returns the identification string.
 * The string shows the word size, the Mersenne exponent,
 * and all parameters of this generator.
 */
const char *get_idstring(void) {
    return IDSTR;
}

/**
 * This function returns the minimum size of array used for \b
 * fill_array32() function.
 * @return minimum size of array used for fill_array32() function.
 */
int get_min_array_size32(void) {
    return N32;
}

/**
 * This function returns the minimum size of array used for \b
 * fill_array64() function.
 * @return minimum size of array used for fill_array64() function.
 */
int get_min_array_size64(void) {
    return N64;
}

/**
 * This function generates and returns 32-bit pseudorandom number.
 * init_gen_rand or init_by_array must be called before this function.
 * @return 32-bit pseudorandom number
 */
uint32_t gen_rand32(void) {
    uint32_t r;

    assert(initialized);
    if (idx >= N32) {
	gen_rand_all();
	idx = 0;
    }
    r = psfmt32[idx++];
    return r;
}

/**
 * This function generates and returns 64-bit pseudorandom number.
 * init_gen_rand or init_by_array must be called before this function.
 * The function gen_rand64 should not be called after gen_rand32,
 * unless an initialization is again executed. 
 * @return 64-bit pseudorandom number
 */
uint64_t gen_rand64(void) {

    uint64_t r;

    assert(initialized);
    assert(idx % 2 == 0);

    if (idx >= N32) {
	gen_rand_all();
	idx = 0;
    }

    r = psfmt64[idx / 2];
    idx += 2;
    return r;
}


/**
 * This function is used to determine extended size of specified array[] 
 * in the fill_array32 function.

 * Because, array size must be greater than or equal to (MEXP / 128 + 1) * 4
 * so, let's fulfill the array if the size smaller than (MEXP / 128 + 1) * 4

 * Because, array size must be a multiple of 4.
 * so, let's fulfill the array.
 */

int get_array32_extended_size(int size) {
    int extended_size = 0;
    int remainder = 0;

    if (size < get_min_array_size32())
        extended_size = get_min_array_size32();
    else 
        extended_size = size; 

    remainder = extended_size % 4;  
    extended_size = extended_size + 4 - remainder; 
    
    return extended_size;
}


/**
 * This function generates pseudorandom 32-bit integers in the
 * specified array[] by one call. The number of pseudorandom integers
 * is specified by the argument size, which must be at least 624 and a
 * multiple of four.  The generation by this function is much faster
 * than the following gen_rand function.
 *
 * For initialization, init_gen_rand or init_by_array must be called
 * before the first call of this function. This function can not be
 * used after calling gen_rand function, without initialization.
 *
 * @param array an array where pseudorandom 32-bit integers are filled
 * by this function.  The pointer to the array must be \b "aligned"
 * (namely, must be a multiple of 16) in the SIMD version, since it
 * refers to the address of a 128-bit integer.  In the standard C
 * version, the pointer is arbitrary.
 *
 * @param size the number of 32-bit pseudorandom integers to be
 * generated.  size must be a multiple of 4, and greater than or equal
 * to (MEXP / 128 + 1) * 4.
 *
 * @note \b memalign or \b posix_memalign is available to get aligned
 * memory. Mac OSX doesn't have these functions, but \b malloc of OSX
 * returns the pointer to the aligned memory block.
 */
int fill_array32(uint32_t *array, int size) {   
    int* ptr;
    int extended_size = get_array32_extended_size(size);

    assert(initialized);
    assert(idx == N32);
    
    /* The pointer to the allocated memory must be \b "aligned"
     * (namely, must be a multiple of 16) in the SIMD version (HAVE_SSE2), since it
     * refers to the address of a 128-bit integer.  In the standard C
     * version, the pointer is arbitrary.
     */
    #if defined(HAVE_SSE2)
      ptr = (w128_t *) _aligned_malloc(sizeof(uint32_t) * extended_size, 16);
    #else
      ptr = (w128_t *) _aligned_malloc(sizeof(uint32_t) * extended_size, __alignof(uint32_t));
    #endif

    if (ptr == NULL)
      return 0;
    else { 
      gen_rand_array(ptr, extended_size / 4);
      memcpy((w128_t *)array, ptr, sizeof(uint32_t) * size);
      idx = N32;
      _aligned_free(ptr);
    }
    return 1;
}

/**
 * This function is used to determine extended size of specified array[] 
 * in the fill_array64 function.

 * Because, array size must be greater than or equal to (MEXP / 128 + 1) * 2
 * so, let's fulfill the array if the size smaller than (MEXP / 128 + 1) * 2

 * Because, array size must be a multiple of 2.
 * so, let's fulfill the array.
 */

int get_array64_extended_size(int size) {
    int extended_size = 0;
    int remainder = 0;

    if (size < get_min_array_size64())
        extended_size = get_min_array_size64();
    else 
        extended_size = size; 

    remainder = extended_size % 2;  
    extended_size = extended_size + 2 - remainder; 
    
    return extended_size;
}

/**
 * This function generates pseudorandom 64-bit integers in the
 * specified array[] by one call. The number of pseudorandom integers
 * is specified by the argument size, which must be at least 312 and a
 * multiple of two.  The generation by this function is much faster
 * than the following gen_rand function.
 *
 * For initialization, init_gen_rand or init_by_array must be called
 * before the first call of this function. This function can not be
 * used after calling gen_rand function, without initialization.
 *
 * @param array an array where pseudorandom 64-bit integers are filled
 * by this function.  The pointer to the array must be "aligned"
 * (namely, must be a multiple of 16) in the SIMD version, since it
 * refers to the address of a 128-bit integer.  In the standard C
 * version, the pointer is arbitrary.
 *
 * @param size the number of 64-bit pseudorandom integers to be
 * generated.  size must be a multiple of 2, and greater than or equal
 * to (MEXP / 128 + 1) * 2
 *
 * @note \b memalign or \b posix_memalign is available to get aligned
 * memory. Mac OSX doesn't have these functions, but \b malloc of OSX
 * returns the pointer to the aligned memory block.
 */
int fill_array64(uint64_t *array, int size) {
    int* ptr;
    int extended_size = get_array64_extended_size(size);

    assert(initialized);
    assert(idx == N32);
    
    /* The pointer to the allocated memory must be \b "aligned"
     * (namely, must be a multiple of 16) in the SIMD version (HAVE_SSE2), since it
     * refers to the address of a 128-bit integer.  In the standard C
     * version, the pointer is arbitrary.
     */
    #if defined(HAVE_SSE2)
      ptr = (w128_t *) _aligned_malloc(sizeof(uint64_t) * extended_size, 16);
    #else
      ptr = (w128_t *) _aligned_malloc(sizeof(uint64_t) * extended_size, __alignof(uint64_t));
    #endif

    if (ptr == NULL)
      return 0;
    else { 
      gen_rand_array(ptr, extended_size / 2);
      memcpy((w128_t *)array, ptr, sizeof(uint64_t) * size);
      idx = N32;
      _aligned_free(ptr);
    }
    return 1;
}

/**
 * This function initializes the internal state array with a 32-bit
 * integer seed.
 *
 * @param seed a 32-bit integer used as the seed.
 */

void init_gen_rand(uint32_t seed) {
    int i;

    psfmt32[idxof(0)] = seed;
    for (i = 1; i < N32; i++) {
	psfmt32[idxof(i)] = 1812433253UL * (psfmt32[idxof(i - 1)] 
					    ^ (psfmt32[idxof(i - 1)] >> 30))
	    + i;
    }
    idx = N32;
    period_certification();
    initialized = 1;
}

/**
 * This function initializes the internal state array,
 * with an array of 32-bit integers used as the seeds
 * @param init_key the array of 32-bit integers, used as a seed.
 * @param key_length the length of init_key.
 */
void init_by_array(uint32_t *init_key, int key_length) {
    int i, j, count;
    uint32_t r;
    int lag;
    int mid;
    int size = N * 4;

    if (size >= 623) {
	lag = 11;
    } else if (size >= 68) {
	lag = 7;
    } else if (size >= 39) {
	lag = 5;
    } else {
	lag = 3;
    }
    mid = (size - lag) / 2;

    memset(sfmt, 0x8b, sizeof(sfmt));
    if (key_length + 1 > N32) {
	count = key_length + 1;
    } else {
	count = N32;
    }
    r = func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid)] 
	      ^ psfmt32[idxof(N32 - 1)]);
    psfmt32[idxof(mid)] += r;
    r += key_length;
    psfmt32[idxof(mid + lag)] += r;
    psfmt32[idxof(0)] = r;

    count--;
    for (i = 1, j = 0; (j < count) && (j < key_length); j++) {
	r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)] 
		  ^ psfmt32[idxof((i + N32 - 1) % N32)]);
	psfmt32[idxof((i + mid) % N32)] += r;
	r += init_key[j] + i;
	psfmt32[idxof((i + mid + lag) % N32)] += r;
	psfmt32[idxof(i)] = r;
	i = (i + 1) % N32;
    }
    for (; j < count; j++) {
	r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)] 
		  ^ psfmt32[idxof((i + N32 - 1) % N32)]);
	psfmt32[idxof((i + mid) % N32)] += r;
	r += i;
	psfmt32[idxof((i + mid + lag) % N32)] += r;
	psfmt32[idxof(i)] = r;
	i = (i + 1) % N32;
    }
    for (j = 0; j < N32; j++) {
	r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % N32)] 
		  + psfmt32[idxof((i + N32 - 1) % N32)]);
	psfmt32[idxof((i + mid) % N32)] ^= r;
	r -= i;
	psfmt32[idxof((i + mid + lag) % N32)] ^= r;
	psfmt32[idxof(i)] = r;
	i = (i + 1) % N32;
    }

    idx = N32;
    period_certification();
    initialized = 1;
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Founder Parola Bilgi Teknolojileri Ltd.
Turkey Turkey
He was born in Bursa, Turkey in 1979, and still lives in this fascinating place.

He started programming with Fortran when he was at university and then has experienced with MS Visual Basic, Borland Delphi, Java, C++ and C#.

He developed database based several client-server and multi-tier applications using OO concepts and OOP. He worked with Oracle, MySQL, MSSQL and Firebird RDBMS.

In the past, he worked on freetime image processing projects using OpenGL, DirectX, SDL technologies. He's interested in encryption/decryption and compression/decompression algorithms, random number generators and computational algorithms such as Monte Carlo Methods.

In 2011, he founded Parola Information Technology Ltd.

http://www.markanabak.com.tr is serviced by Parola Information Technology Ltd. It's a SAAS model for Intellectual Property sector.

Comments and Discussions