Click here to Skip to main content
15,886,778 members
Articles / Desktop Programming / Win32

Play Audio Files with DirectSound and Display its Spectrum in Real Time - Part 3

Rate me:
Please Sign up or sign in to vote.
4.93/5 (21 votes)
24 Dec 2008CPOL3 min read 273.7K   17.7K   86  
An article to show how to play audio file with DirectSound and display its spectrum in real time accurately
/********************************************************************
 *                                                                  *
 * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE.   *
 * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS     *
 * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
 * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING.       *
 *                                                                  *
 * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2007             *
 * by the Xiph.Org Foundation http://www.xiph.org/                  *
 *                                                                  *
 ********************************************************************

 function: linear scale -> dB, Bark and Mel scales
 last mod: $Id: scales.h 13293 2007-07-24 00:09:47Z xiphmont $

 ********************************************************************/

#ifndef _V_SCALES_H_
#define _V_SCALES_H_

#include <math.h>
#include "os.h"

/* 20log10(x) */
#define VORBIS_IEEE_FLOAT32 1
#ifdef VORBIS_IEEE_FLOAT32

static float unitnorm(float x){
  union {
    ogg_uint32_t i;
    float f;
  } ix;
  ix.f = x;
  ix.i = (ix.i & 0x80000000U) | (0x3f800000U);
  return ix.f;
}

/* Segher was off (too high) by ~ .3 decibel.  Center the conversion correctly. */
static float todB(const float *x){
  union {
    ogg_uint32_t i;
    float f;
  } ix;
  ix.f = *x;
  ix.i = ix.i&0x7fffffff;
  return (float)(ix.i * 7.17711438e-7f -764.6161886f);
}

#define todB_nn(x) todB(x)

#else

static float unitnorm(float x){
  if(x<0)return(-1.f);
  return(1.f);
}

#define todB(x)   (*(x)==0?-400.f:log(*(x)**(x))*4.34294480f)
#define todB_nn(x)   (*(x)==0.f?-400.f:log(*(x))*8.6858896f)

#endif 

#define fromdB(x) (exp((x)*.11512925f))  

/* The bark scale equations are approximations, since the original
   table was somewhat hand rolled.  The below are chosen to have the
   best possible fit to the rolled tables, thus their somewhat odd
   appearance (these are more accurate and over a longer range than
   the oft-quoted bark equations found in the texts I have).  The
   approximations are valid from 0 - 30kHz (nyquist) or so.

   all f in Hz, z in Bark */

#define toBARK(n)   (13.1f*atan(.00074f*(n))+2.24f*atan((n)*(n)*1.85e-8f)+1e-4f*(n))
#define fromBARK(z) (102.f*(z)-2.f*pow(z,2.f)+.4f*pow(z,3.f)+pow(1.46f,z)-1.f)
#define toMEL(n)    (log(1.f+(n)*.001f)*1442.695f)
#define fromMEL(m)  (1000.f*exp((m)/1442.695f)-1000.f)

/* Frequency to octave.  We arbitrarily declare 63.5 Hz to be octave
   0.0 */

#define toOC(n)     (log(n)*1.442695f-5.965784f)
#define fromOC(o)   (exp(((o)+5.965784f)*.693147f))

#endif

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Software Developer none
China China
To be, or not to be, this is question. That's are all depend on your decision. What do you think?

Comments and Discussions