Click here to Skip to main content
Click here to Skip to main content
Articles » Multimedia » OpenGL » General » Downloads
 
Add your own
alternative version

Basic Curves And Surfaces Modeler

, 18 Apr 2012
A basic demo of modeling curves and surfaces in OpenGL.
cadsurfexe.zip
CadSurfexe
CadSurf.exe
VKGeom.dll
VKGraphic.dll
cadsurf_demo.zip
cadsurf_src.zip
CadSurf_src
VKernel
VKGraphic
VKGraphic.dsp
VKGraphic.dsw
VKGraphic.plg
VKGeom
VKGeom.dsp
VKGeom.dsw
cadsurf
CadSurf.clw
CadSurf.dsp
cadsurf.dsw
Thumbs.db
res
bmp00001.bmp
cadsurf.ico
CADSURFDOC.ICO
new_splash.bmp
new_splash.PNG
new_splash_small.bmp
tb_geom.bmp
Thumbs.db
toolbar.bmp
toolbar1.bmp
untitled.bmp
XPStyle.manifest
CadSurf_VS2008.zip
CadSurf
cadsurf
CadSurf.suo
res
bmp00001.bmp
cadsurf.ico
CADSURFDOC.ICO
new_splash.bmp
new_splash.PNG
new_splash_small.bmp
tb_geom.bmp
Thumbs.db
toolbar.bmp
toolbar1.bmp
untitled.bmp
VKernel
VKGeom
VKGraphic
VKGraphic.plg
#include "stdafx.h"

#include "MMath.h"

double degToRad(double ang)
{
    return ang * (double)PI / (double)180.0;
}

double radToDeg(double ang)
{
    return ang * (double)180.0 / (double)PI;
}

double sround(const double& num)
{
	double n = num;
	int in = (int)n;
	double mn = n - in;
	if(mn < 0.5)
		n = floor(n);
	else
		n = ceil(n);
	return n;
}

/*
Matrix Inversion
by Richard Carling
from "Graphics Gems", Academic Press, 1990
*/

#define SMALL_NUMBER	1.e-8
/* 
 *   inverse( original_matrix, inverse_matrix )
 * 
 *    calculate the inverse of a 4x4 matrix
 *
 *     -1     
 *     A  = ___1__ adjoint A
 *         det A
 */


void inverse( Matrix4* in, Matrix4* out ) 
{
    int i, j;
    double det;

    /* calculate the adjoint matrix */

    adjoint( in, out );

    /*  calculate the 4x4 determinant
     *  if the determinant is zero, 
     *  then the inverse matrix is not unique.
     */

    det = det4x4( in );

    if ( fabs( det ) < SMALL_NUMBER) {
        printf("Non-singular matrix, no inverse!\n");
        exit(1);
    }

    /* scale the adjoint matrix to get the inverse */

    for (i=0; i<4; i++)
        for(j=0; j<4; j++)
	    out->element[i][j] = out->element[i][j] / det;
}


/* 
 *   adjoint( original_matrix, inverse_matrix )
 * 
 *     calculate the adjoint of a 4x4 matrix
 *
 *      Let  a   denote the minor determinant of matrix A obtained by
 *           ij
 *
 *      deleting the ith row and jth column from A.
 *
 *                    i+j
 *     Let  b   = (-1)    a
 *          ij            ji
 *
 *    The matrix B = (b  ) is the adjoint of A
 *                     ij
 */

void adjoint(Matrix4 *in, Matrix4 *out)
{
    double a1, a2, a3, a4, b1, b2, b3, b4;
    double c1, c2, c3, c4, d1, d2, d3, d4;

    /* assign to individual variable names to aid  */
    /* selecting correct values  */

	a1 = in->element[0][0]; b1 = in->element[0][1]; 
	c1 = in->element[0][2]; d1 = in->element[0][3];

	a2 = in->element[1][0]; b2 = in->element[1][1]; 
	c2 = in->element[1][2]; d2 = in->element[1][3];

	a3 = in->element[2][0]; b3 = in->element[2][1];
	c3 = in->element[2][2]; d3 = in->element[2][3];

	a4 = in->element[3][0]; b4 = in->element[3][1]; 
	c4 = in->element[3][2]; d4 = in->element[3][3];


    /* row column labeling reversed since we transpose rows & columns */

    out->element[0][0]  =   det3x3( b2, b3, b4, c2, c3, c4, d2, d3, d4);
    out->element[1][0]  = - det3x3( a2, a3, a4, c2, c3, c4, d2, d3, d4);
    out->element[2][0]  =   det3x3( a2, a3, a4, b2, b3, b4, d2, d3, d4);
    out->element[3][0]  = - det3x3( a2, a3, a4, b2, b3, b4, c2, c3, c4);

        
    out->element[0][1]  = - det3x3( b1, b3, b4, c1, c3, c4, d1, d3, d4);
    out->element[1][1]  =   det3x3( a1, a3, a4, c1, c3, c4, d1, d3, d4);
    out->element[2][1]  = - det3x3( a1, a3, a4, b1, b3, b4, d1, d3, d4);
    out->element[3][1]  =   det3x3( a1, a3, a4, b1, b3, b4, c1, c3, c4);
        
    out->element[0][2]  =   det3x3( b1, b2, b4, c1, c2, c4, d1, d2, d4);
    out->element[1][2]  = - det3x3( a1, a2, a4, c1, c2, c4, d1, d2, d4);
    out->element[2][2]  =   det3x3( a1, a2, a4, b1, b2, b4, d1, d2, d4);
    out->element[3][2]  = - det3x3( a1, a2, a4, b1, b2, b4, c1, c2, c4);
        
    out->element[0][3]  = - det3x3( b1, b2, b3, c1, c2, c3, d1, d2, d3);
    out->element[1][3]  =   det3x3( a1, a2, a3, c1, c2, c3, d1, d2, d3);
    out->element[2][3]  = - det3x3( a1, a2, a3, b1, b2, b3, d1, d2, d3);
    out->element[3][3]  =   det3x3( a1, a2, a3, b1, b2, b3, c1, c2, c3);
}
/*
 * double = det4x4( matrix )
 * 
 * calculate the determinant of a 4x4 matrix.
 */
double det4x4( Matrix4 *m )
{
    double ans;
    double a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4, d1, d2, d3, d4;

    /* assign to individual variable names to aid selecting */
	/*  correct elements */

	a1 = m->element[0][0]; b1 = m->element[0][1]; 
	c1 = m->element[0][2]; d1 = m->element[0][3];

	a2 = m->element[1][0]; b2 = m->element[1][1]; 
	c2 = m->element[1][2]; d2 = m->element[1][3];

	a3 = m->element[2][0]; b3 = m->element[2][1]; 
	c3 = m->element[2][2]; d3 = m->element[2][3];

	a4 = m->element[3][0]; b4 = m->element[3][1]; 
	c4 = m->element[3][2]; d4 = m->element[3][3];

    ans = a1 * det3x3( b2, b3, b4, c2, c3, c4, d2, d3, d4)
        - b1 * det3x3( a2, a3, a4, c2, c3, c4, d2, d3, d4)
        + c1 * det3x3( a2, a3, a4, b2, b3, b4, d2, d3, d4)
        - d1 * det3x3( a2, a3, a4, b2, b3, b4, c2, c3, c4);
    return ans;
}



/*
 * double = det3x3(  a1, a2, a3, b1, b2, b3, c1, c2, c3 )
 * 
 * calculate the determinant of a 3x3 matrix
 * in the form
 *
 *     | a1,  b1,  c1 |
 *     | a2,  b2,  c2 |
 *     | a3,  b3,  c3 |
 */

double det3x3( double a1, double a2, double a3, double b1, double b2, double b3, double c1, double c2, double c3 )
{
    double ans;

    ans = a1 * det2x2( b2, b3, c2, c3 )
        - b1 * det2x2( a2, a3, c2, c3 )
        + c1 * det2x2( a2, a3, b2, b3 );
    return ans;
}

/*
 * double = det2x2( double a, double b, double c, double d )
 * 
 * calculate the determinant of a 2x2 matrix.
 */

double det2x2( double a, double b, double c, double d)
{
    double ans;
    ans = a * d - b * c;
    return ans;
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)

Share

About the Author

Sharjith
Engineer Tata Technologies Ltd
India India
Sharjith is a Mechanical Engineer with strong passion for Automobiles, Aircrafts and Software development.

| Advertise | Privacy | Mobile
Web02 | 2.8.140814.1 | Last Updated 18 Apr 2012
Article Copyright 2003 by Sharjith
Everything else Copyright © CodeProject, 1999-2014
Terms of Service
Layout: fixed | fluid