Click here to Skip to main content
15,886,110 members
Articles / Desktop Programming / WPF

Building an Extensible Application with MEF, WPF, and MVVM

Rate me:
Please Sign up or sign in to vote.
4.88/5 (45 votes)
15 Nov 2009LGPL316 min read 302K   7.4K   185  
An article for anyone interested in how to build an extensible application using WPF and the Model-View-ViewModel pattern.
#region MIT License
/*
 * Copyright (c) 2005-2008 Jonathan Mark Porter. http://physics2d.googlepages.com/
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy 
 * of this software and associated documentation files (the "Software"), to deal 
 * in the Software without restriction, including without limitation the rights to 
 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of 
 * the Software, and to permit persons to whom the Software is furnished to do so, 
 * subject to the following conditions:
 * 
 * The above copyright notice and this permission notice shall be 
 * included in all copies or substantial portions of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
 * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
 * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */
#endregion



// because this code was basically copied from Box2D
// Copyright (c) 2006 Erin Catto http://www.gphysics.com
#if UseDouble
using Scalar = System.Double;
#else
using Scalar = System.Single;
#endif
using System;
using System.Collections.ObjectModel;

using AdvanceMath;






namespace Physics2DDotNet.Joints
{
    /// <summary>
    /// A Joint Between 2 Bodies that will pivot around an Anchor.
    /// </summary>
    [Serializable]
    public sealed class HingeJoint : Joint, Solvers.ISequentialImpulsesJoint
    {
        Solvers.SequentialImpulsesSolver sisolver;
        Body body1;
        Body body2;
        Matrix2x2 M;
        Vector2D localAnchor1, localAnchor2;
        Vector2D r1, r2;
        Vector2D bias;
        Vector2D accumulatedImpulse;
        Scalar biasFactor;
        Scalar softness;
        Scalar distanceTolerance;



        /// <summary>
        /// Creates a new HingeJoint Instance.
        /// </summary>
        /// <param name="body1">One of the bodies to be Jointed.</param>
        /// <param name="body2">One of the bodies to be Jointed.</param>
        /// <param name="anchor">The location of the Hinge.</param>
        /// <param name="lifeTime">A object Describing how long the object will be in the engine.</param>
        public HingeJoint(Body body1, Body body2, Vector2D anchor, Lifespan lifetime)
            : base(lifetime)
        {
            if (body1 == null) { throw new ArgumentNullException("body1"); }
            if (body2 == null) { throw new ArgumentNullException("body2"); }
            if (body1 == body2) { throw new ArgumentException("You cannot add a joint to a body to itself"); }
            this.body1 = body1;
            this.body2 = body2;
            body1.ApplyPosition();
            body2.ApplyPosition();

            Vector2D.Transform(ref body1.Matrices.ToBody, ref anchor, out  this.localAnchor1);
            Vector2D.Transform(ref body2.Matrices.ToBody, ref anchor, out  this.localAnchor2);

            this.softness = 0.001f;
            this.biasFactor = 0.2f;
            this.distanceTolerance = Scalar.PositiveInfinity;
        }

        public Scalar BiasFactor
        {
            get { return biasFactor; }
            set { biasFactor = value; }
        }
        public Scalar Softness
        {
            get { return softness; }
            set { softness = value; }
        }
        /// <summary>
        /// The Distance the joint can stretch before breaking. 
        /// </summary>
        public Scalar DistanceTolerance
        {
            get { return distanceTolerance; }
            set
            {
                if (value <= 0) { throw new ArgumentOutOfRangeException("value"); }
                distanceTolerance = value;
            }
        }
        public override ReadOnlyCollection<Body> Bodies
        {
            get { return new ReadOnlyCollection<Body>(new Body[2] { body1, body2 }); }
        }

        public override void CheckFrozen()
        {
            if (body1.IsFrozen ^ body2.IsFrozen)
            {
                body1.IsFrozen = false;
                body2.IsFrozen = false;
                body1.idleCount = 0;
                body2.idleCount = 0;
            }
        }
        protected override void OnAdded(EventArgs e)
        {
            this.sisolver = Engine.Solver as Solvers.SequentialImpulsesSolver;
            base.OnAdded(e);
        }
        void Solvers.ISequentialImpulsesJoint.PreStep(TimeStep step)
        {


            Scalar mass1Inv = body1.Mass.MassInv;
            Scalar mass2Inv = body2.Mass.MassInv;
            Scalar inertia1Inv = body1.Mass.MomentOfInertiaInv;
            Scalar inertia2Inv = body2.Mass.MomentOfInertiaInv;

            // Pre-compute anchors, mass matrix, and bias.

            Vector2D.TransformNormal(ref body1.Matrices.ToWorld, ref localAnchor1, out r1);
            Vector2D.TransformNormal(ref body2.Matrices.ToWorld, ref localAnchor2, out r2);

            // deltaV = deltaV0 + K * impulse
            // invM = [(1/m1 + 1/m2) * eye(2) - skew(r1) * invI1 * skew(r1) - skew(r2) * invI2 * skew(r2)]
            //      = [1/m1+1/m2     0    ] + invI1 * [r1.y*r1.y -r1.x*r1.y] + invI2 * [r1.y*r1.y -r1.x*r1.y]
            //        [    0     1/m1+1/m2]           [-r1.x*r1.y r1.x*r1.x]           [-r1.x*r1.y r1.x*r1.x]

            Matrix2x2 K;
            K.m00 = mass1Inv + mass2Inv;
            K.m11 = mass1Inv + mass2Inv;

            K.m00 += inertia1Inv * r1.Y * r1.Y;
            K.m01 = -inertia1Inv * r1.X * r1.Y;
            K.m10 = -inertia1Inv * r1.X * r1.Y;
            K.m11 += inertia1Inv * r1.X * r1.X;

            K.m00 += inertia2Inv * r2.Y * r2.Y;
            K.m01 -= inertia2Inv * r2.X * r2.Y;
            K.m10 -= inertia2Inv * r2.X * r2.Y;
            K.m11 += inertia2Inv * r2.X * r2.X;


            K.m00 += softness;
            K.m11 += softness;

            Matrix2x2.Invert(ref K, out M);


            Vector2D dp, vect1, vect2;
            Vector2D.Add(ref body1.State.Position.Linear, ref r1, out vect1);
            Vector2D.Add(ref body2.State.Position.Linear, ref r2, out vect2);
            Vector2D.Subtract(ref vect2, ref vect1, out dp);

            if (!Scalar.IsPositiveInfinity(distanceTolerance) &&
                dp.MagnitudeSq > distanceTolerance * distanceTolerance)
            {
                this.Lifetime.IsExpired = true;
            }

            if (sisolver.PositionCorrection)
            {
                //bias = -0.1f * dtInv * dp;
                Scalar flt = -biasFactor * step.DtInv;
                Vector2D.Multiply(ref dp, ref flt, out bias);
            }
            else
            {
                bias = Vector2D.Zero;
            }
            if (sisolver.WarmStarting)
            {
                PhysicsHelper.SubtractImpulse(
                    ref body1.State.Velocity, ref accumulatedImpulse,
                    ref r1, ref mass1Inv, ref inertia1Inv);

                PhysicsHelper.AddImpulse(
                    ref body2.State.Velocity, ref accumulatedImpulse,
                    ref r2, ref mass2Inv, ref inertia2Inv);
            }
            else
            {
                accumulatedImpulse = Vector2D.Zero;
            }
            body1.ApplyProxy();
            body2.ApplyProxy();
        }
        void Solvers.ISequentialImpulsesJoint.ApplyImpulse()
        {

            Scalar mass1Inv = body1.Mass.MassInv;
            Scalar mass2Inv = body2.Mass.MassInv;
            Scalar inertia1Inv = body1.Mass.MomentOfInertiaInv;
            Scalar inertia2Inv = body2.Mass.MomentOfInertiaInv;
            PhysicsState state1 = body1.State;
            PhysicsState state2 = body2.State;

            Vector2D dv;
            PhysicsHelper.GetRelativeVelocity(
                ref state1.Velocity, ref state2.Velocity,
                ref r1, ref r2, out dv);



            Vector2D impulse;
            impulse.X = bias.X - dv.X - softness * accumulatedImpulse.X;
            impulse.Y = bias.Y - dv.Y - softness * accumulatedImpulse.Y;
            Vector2D.Transform(ref  M, ref impulse, out impulse);
            //impulse = M * (bias - dv - softness * P);

            PhysicsHelper.SubtractImpulse(
                ref state1.Velocity, ref impulse,
                ref r1, ref mass1Inv, ref inertia1Inv);

            PhysicsHelper.AddImpulse(
                ref state2.Velocity, ref impulse,
                ref r2, ref mass2Inv, ref inertia2Inv);

            Vector2D.Add(ref accumulatedImpulse, ref impulse, out accumulatedImpulse);

            body1.ApplyProxy();
            body2.ApplyProxy();
        }
    }
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The GNU Lesser General Public License (LGPLv3)


Written By
Engineer
Canada Canada
By day I'm a Professional Engineer, doing .NET, VB6, SQL Server, and Automation (Ladder Logic, etc.) programming.

On weekends I write and maintain an open source extensible application framework called SoapBox Core.

In the evenings I provide front line technical support for moms4mom.com and I help out with administrative tasks (like formatting stuff). I also pitch in as a moderator from time to time.

You can follow me on twitter.

Comments and Discussions