Click here to Skip to main content
15,881,172 members
Articles / Multimedia / DirectX

Rendering Text with Direct2D & DirectWrite

Rate me:
Please Sign up or sign in to vote.
4.94/5 (39 votes)
3 Jan 2015CPOL8 min read 105.3K   2.8K   76  
Direct2D, DirectWrite, Windows API, C++, std::shared_ptr and more
#include "stdafx.h"

/*
 * -- SuperLU MT routine (version 2.0) --
 * Lawrence Berkeley National Lab, Univ. of California Berkeley,
 * and Xerox Palo Alto Research Center.
 * September 10, 2007
 *
 */
#include <math.h>
#include "hnum_pcsp_defs.h"

namespace harlinn
{
    namespace numerics
    {
        namespace SuperLU
        {
            namespace Complex
            {

                void cCreate_CompCol_Matrix(SuperMatrix *A, int m, int n, int nnz, complex *nzval,
		                      int *rowind, int *colptr,
		                      Stype_t stype, Dtype_t dtype, Mtype_t mtype)
                {
                    NCformat *Astore;

                    A->Stype = stype;
                    A->Dtype = dtype;
                    A->Mtype = mtype;
                    A->nrow = m;
                    A->ncol = n;
                    A->Store = (void *) SUPERLU_MALLOC( sizeof(NCformat) );
                    Astore = (NCformat *) A->Store;
                    Astore->nnz = nnz;
                    Astore->nzval = nzval;
                    Astore->rowind = rowind;
                    Astore->colptr = colptr;
                }

                void cCreate_CompCol_Permuted(SuperMatrix *A, int m, int n, int nnz, complex *nzval,
			                 int *rowind, int *colbeg, int *colend,
			                 Stype_t stype, Dtype_t dtype, Mtype_t mtype)
                {
                    NCPformat *Astore;

                    A->Stype = stype;
                    A->Dtype = dtype;
                    A->Mtype = mtype;
                    A->nrow = m;
                    A->ncol = n;
                    A->Store = (void *) SUPERLU_MALLOC( sizeof(NCPformat) );
                    Astore = (NCPformat *) A->Store;
                    Astore->nnz = nnz;
                    Astore->nzval = nzval;
                    Astore->rowind = rowind;
                    Astore->colbeg = colbeg;
                    Astore->colend = colend;
                }

                // Convert a row compressed storage into a column compressed storage.
                void cCompRow_to_CompCol(int m, int n, int nnz, 
		                    complex *a, int *colind, int *rowptr,
		                    complex **at, int **rowind, int **colptr)
                {
                    register int i, j, col, relpos;
                    int *marker;

                    // Allocate storage for another copy of the matrix. 
                    *at = (complex *) complexMalloc(nnz);
                    *rowind = (int *) intMalloc(nnz);
                    *colptr = (int *) intMalloc(n+1);
                    marker = (int *) intCalloc(n);
    
                    // Get counts of each column of A, and set up column pointers 
                    for (i = 0; i < m; ++i)
                    {
	                    for (j = rowptr[i]; j < rowptr[i+1]; ++j) 
                        {
                            ++marker[colind[j]];(*colptr)[0] = 0;
                        }
                    }

                    for (j = 0; j < n; ++j) 
                    {
	                    (*colptr)[j+1] = (*colptr)[j] + marker[j];
	                    marker[j] = (*colptr)[j];
                    }

                    // Transfer the matrix into the compressed column storage.
                    for (i = 0; i < m; ++i) 
                    {
	                    for (j = rowptr[i]; j < rowptr[i+1]; ++j) 
                        {
	                        col = colind[j];
	                        relpos = marker[col];
	                        (*rowind)[relpos] = i;
	                        (*at)[relpos] = a[j];
	                        ++marker[col];
	                    }
                    }

                    SUPERLU_FREE(marker);
                }


                // Copy matrix A into matrix B. 
                void cCopy_CompCol_Matrix(SuperMatrix *A, SuperMatrix *B)
                {
                    NCformat *Astore, *Bstore;
                    int ncol, nnz, i;

                    B->Stype = A->Stype;
                    B->Dtype = A->Dtype;
                    B->Mtype = A->Mtype;
                    B->nrow  = A->nrow;;
                    B->ncol  = ncol = A->ncol;
                    Astore   = (NCformat *) A->Store;
                    Bstore   = (NCformat *) B->Store;
                    Bstore->nnz = nnz = Astore->nnz;

                    for (i = 0; i < nnz; ++i)
                    {
	                    ((complex *)Bstore->nzval)[i] = ((complex *)Astore->nzval)[i];
                    }

                    for (i = 0; i < nnz; ++i) 
                    {
                        Bstore->rowind[i] = Astore->rowind[i];
                    }
                    for (i = 0; i <= ncol; ++i) 
                    {
                        Bstore->colptr[i] = Astore->colptr[i];
                    }
                }


                int cPrint_CompCol_Matrix(SuperMatrix *A)
                {
                    NCformat     *Astore;
                    register int i;
                    float       *dp;
    
                    printf("\nCompCol matrix: ");
                    printf("Stype %d, Dtype %d, Mtype %d\n", A->Stype,A->Dtype,A->Mtype);
                    Astore = (NCformat *) A->Store;
                    dp = (float *) Astore->nzval;
                    printf("nrow %d, ncol %d, nnz %d\n", A->nrow,A->ncol,Astore->nnz);
                    printf("\nnzval: ");
                    for (i = 0; i < 2*Astore->nnz; ++i) printf("%f  ", dp[i]);
                    printf("\nrowind: ");
                    for (i = 0; i < Astore->nnz; ++i) printf("%d  ", Astore->rowind[i]);
                    printf("\ncolptr: ");
                    for (i = 0; i <= A->ncol; ++i) printf("%d  ", Astore->colptr[i]);
                    printf("\nend CompCol matrix.\n");

                    return 0;
                }

                int cPrint_Dense_Matrix(SuperMatrix *A)
                {
                    DNformat     *Astore;
                    register int i;
                    float       *dp;
    
                    printf("\nDense matrix: ");
                    printf("Stype %d, Dtype %d, Mtype %d\n", A->Stype,A->Dtype,A->Mtype);
                    Astore = (DNformat *) A->Store;
                    dp = (float *) Astore->nzval;
                    printf("nrow %d, ncol %d, lda %d\n", A->nrow,A->ncol,Astore->lda);
                    printf("\nnzval: ");
                    for (i = 0; i < 2*A->nrow; ++i) 
                    {
                        printf("%f  ", dp[i]);
                    }
                    printf("\nend Dense matrix.\n");

                    return 0;
                }

                void cCreate_Dense_Matrix(SuperMatrix *X, int m, int n, complex *x, int ldx,
		                    Stype_t stype, Dtype_t dtype, Mtype_t mtype)
                {
                    DNformat    *Xstore;
    
                    X->Stype = stype;
                    X->Dtype = dtype;
                    X->Mtype = mtype;
                    X->nrow = m;
                    X->ncol = n;
                    X->Store = (void *) SUPERLU_MALLOC( sizeof(DNformat) );
                    Xstore = (DNformat *) X->Store;
                    Xstore->lda = ldx;
                    Xstore->nzval = (complex *) x;
                }

                void cCopy_Dense_Matrix(int M, int N, complex *X, int ldx, complex *Y, int ldy)
                {
                /*
                 *
                 *  Purpose
                 *  =======
                 *
                 *  Copies a two-dimensional matrix X to another matrix Y.
                 */
                    int    i, j;
    
                    for (j = 0; j < N; ++j)
                    {
                        for (i = 0; i < M; ++i)
                        {
                            Y[i + j*ldy] = X[i + j*ldx];
                        }
                    }
                }

                void
                cCreate_SuperNode_Matrix(SuperMatrix *L, int m, int n, int nnz, complex *nzval,
			                int *nzval_colptr, int *rowind, int *rowind_colptr,
			                int *col_to_sup, int *sup_to_col,
			                Stype_t stype, Dtype_t dtype, Mtype_t mtype)
                {
                    SCformat *Lstore;

                    L->Stype = stype;
                    L->Dtype = dtype;
                    L->Mtype = mtype;
                    L->nrow = m;
                    L->ncol = n;
                    L->Store = (void *) SUPERLU_MALLOC( sizeof(SCformat) );
                    Lstore = (SCformat *)L->Store;
                    Lstore->nnz = nnz;
                    Lstore->nsuper = col_to_sup[n];
                    Lstore->nzval = nzval;
                    Lstore->nzval_colptr = nzval_colptr;
                    Lstore->rowind = rowind;
                    Lstore->rowind_colptr = rowind_colptr;
                    Lstore->col_to_sup = col_to_sup;
                    Lstore->sup_to_col = sup_to_col;

                }

                void cCreate_SuperNode_Permuted(SuperMatrix *L, int m, int n, int nnz,
			                   complex *nzval, 
			                   int *nzval_colbeg, int *nzval_colend,
			                   int *rowind, int *rowind_colbeg, int *rowind_colend,
			                   int *col_to_sup, 
			                   int *sup_to_colbeg, int *sup_to_colend,
			                   Stype_t stype, Dtype_t dtype, Mtype_t mtype)
                {
                    SCPformat *Lstore;

                    L->Stype = stype;
                    L->Dtype = dtype;
                    L->Mtype = mtype;
                    L->nrow = m;
                    L->ncol = n;
                    L->Store = (void *) SUPERLU_MALLOC( sizeof(SCPformat) );
                    Lstore = (SCPformat *)L->Store;
                    Lstore->nnz = nnz;
                    Lstore->nsuper = col_to_sup[n];
                    Lstore->nzval = nzval;
                    Lstore->nzval_colbeg = nzval_colbeg;
                    Lstore->nzval_colend = nzval_colend;
                    Lstore->rowind = rowind;
                    Lstore->rowind_colbeg = rowind_colbeg;
                    Lstore->rowind_colend = rowind_colend;
                    Lstore->col_to_sup = col_to_sup;
                    Lstore->sup_to_colbeg = sup_to_colbeg;
                    Lstore->sup_to_colend = sup_to_colend;

                }


                /*
                 * Diagnostic print of column "jcol" in the U/L factor.
                 */
                void cprint_lu_col(int pnum, char *msg, int pcol, int jcol, int w, int pivrow, int *xprune, GlobalLU_t *Glu)
                {
                    int     i, k, fsupc;
                    int     *xsup, *supno;
                    int     *xlsub, *xlsub_end, *lsub;
                    complex  *lusup;
                    int     *xlusup, *xlusup_end;

                    xsup    = Glu->xsup;
                    supno   = Glu->supno;
                    lsub    = Glu->lsub;
                    xlsub   = Glu->xlsub;
                    xlsub_end = Glu->xlsub_end;
                    lusup   = Glu->lusup;
                    xlusup  = Glu->xlusup;
                    xlusup_end = Glu->xlusup_end;
    
                    printf("(%d)%s fstcol %d,col %d,w %d: pivrow %d, supno %d, xprune %d\n", 
	                   pnum, msg, pcol, jcol, w, pivrow, supno[jcol], xprune[jcol]);
    
                    printf("(%d)\tU-col: xusub %d - %d\n", pnum, Glu->xusub[jcol], Glu->xusub_end[jcol]);
                    for (i = Glu->xusub[jcol]; i < Glu->xusub_end[jcol]; i++)
                    {
	                    printf("(%d)\t%d\t%8e\n", pnum, Glu->usub[i], Glu->ucol[i]);
                    }
                    fsupc = xsup[supno[jcol]];
                    k = xlusup[jcol];
                    printf("(%d)\tL-col in s-node: xlsub %d - %d, xlusup %d - %d\n",
	                   pnum, xlsub[fsupc],xlsub_end[fsupc],xlusup[jcol],xlusup_end[jcol]);
                    for (i = xlsub[fsupc]; i < xlsub_end[fsupc]; ++i)
                    {
	                    printf("(%d)\t%d\t%.8e\n", pnum, lsub[i], lusup[k++]);
                    }

                    fflush(stdout);
                }

                /*Dan fix above printf 's*/

                /*
                 * Check whether vec[*] == 0. For the two vectors dense[*] and tempv[*],
                 * this invariant should be mantained before and after calling some
                 * numeric update routines, such as "panel_bmod" and "column_bmod". 
                 */
                void ccheck_zero_vec(int pnum, char *msg, int n, complex *vec)
                {
                    register int i, nonzero;

                    nonzero = FALSE;
                    for (i = 0; i < n; ++i) 
                    {
                        if ((vec[i].r != 0.0) || (vec[i].i != 0.0))
                        {
                            printf("(%d) vec[%d] = %.10e; should be zero!\n",pnum, i, vec[i]);
                            nonzero = TRUE;
                        }
                    }
                    if ( nonzero ) 
                    {
	                    printf("(%d) %s\n", pnum, msg);
	                    SUPERLU_ABORT("Not a zero vector.");
                    }
                }


                void cGenXtrue(int n, int nrhs, complex *x, int ldx)
                {
                    int  i, j;
                    for (j = 0; j < nrhs; ++j) 
                    {
	                    for (i = 0; i < n; ++i) 
                        {
                            x[i + j*ldx].r = 1.0;
                            x[i + j*ldx].i = 0.0;
                        }
                    }
                }

                /*
                 * Let rhs[i] = sum of i-th row of A, so the solution vector is all 1's
                 */
                void cFillRHS(trans_t trans, int nrhs, complex *x, int ldx, SuperMatrix *A, SuperMatrix *B)
                {
                    NCformat *Astore;
                    complex   *Aval;
                    DNformat *Bstore;
                    complex   *rhs;
                    complex one = {1.0, 0.0};
                    complex zero = {0.0, 0.0};
                    int      ldc;
                    char     trans_c[1];

                    Astore = (NCformat *)A->Store;
                    Aval   = (complex *) Astore->nzval;
                    Bstore = (DNformat *)B->Store;
                    rhs    = (complex *)Bstore->nzval;
                    ldc    = Bstore->lda;
    
                    if ( trans == NOTRANS ) 
                    {
                        *trans_c = 'N';
                    }
                    else 
                    {
                        *trans_c = 'T';
                    }
    
                    sp_cgemm(trans_c, A->nrow, nrhs, A->ncol, one, A,x, ldx, zero, rhs, ldc);
                }

                /* 
                 * Fills a double precision array with a given value.
                 */
                void cfill(complex *a, int alen, complex dval)
                {
                    register int i;
                    for (i = 0; i < alen; i++) 
                    {
                        a[i] = dval;
                    }
                }



                /* 
                 * Check the inf-norm of the error vector 
                 */
                void cinf_norm_error(int nrhs, SuperMatrix *X, complex *xtrue)
                {
                    DNformat *Xstore;
                    float err, xnorm;
                    complex *Xmat, *soln_work;
                    complex temp;
                    int i, j;

                    Xstore = (DNformat *)X->Store;
                    Xmat = (complex *)Xstore->nzval;

                    for (j = 0; j < nrhs; j++) 
                    {
                        soln_work = &Xmat[j*Xstore->lda];
                        err = xnorm = 0.0;
                        for (i = 0; i < X->nrow; i++) 
                        {
                            c_sub(&temp, &soln_work[i], &xtrue[i]);
                            err = SUPERLU_MAX(err, c_abs(&temp));
                            xnorm = SUPERLU_MAX(xnorm, c_abs(&soln_work[i]));
                        }
                        err = err / xnorm;
                        printf("||X - Xtrue||/||X|| = %e\n", err);
                    }
                }



                /* Print performance of the code. */
                void cPrintPerf(SuperMatrix *L, SuperMatrix *U, superlu_memusage_t *superlu_memusage, float rpg, float rcond, float *ferr,float *berr, char *equed, Gstat_t *Gstat)
                {
                    SCPformat *Lstore;
                    NCPformat *Ustore;
                    double   *utime;
                    flops_t  *ops;
    
                    utime = Gstat->utime;
                    ops   = Gstat->ops;
    
                    if ( utime[int(PhaseType::FACT)] != 0. )
                    {
	                    printf("Factor flops = %e\tMflops = %8.2f\n", ops[int(PhaseType::FACT)],ops[int(PhaseType::FACT)]*1e-6/utime[int(PhaseType::FACT)]);
                    }
                    printf("Identify relaxed snodes	= %8.2f\n", utime[int(PhaseType::RELAX)]);
                    if ( utime[int(PhaseType::SOLVE)] != 0. )
                    {
	                    printf("Solve flops = %.0f, Mflops = %8.2f\n", ops[int(PhaseType::SOLVE)],ops[int(PhaseType::SOLVE)]*1e-6/utime[int(PhaseType::SOLVE)]);
                    }
    
                    Lstore = (SCPformat *) L->Store;
                    Ustore = (NCPformat *) U->Store;
                    printf("\t#NZ in factor L = %d\n", Lstore->nnz);
                    printf("\t#NZ in factor U = %d\n", Ustore->nnz);
                    printf("\t#NZ in L+U = %d\n", Lstore->nnz + Ustore->nnz - L->ncol);
	
                    printf("L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",
	                   superlu_memusage->for_lu/1e6, superlu_memusage->total_needed/1e6,
	                   superlu_memusage->expansions);
	
                    printf("\tFactor\tMflops\tSolve\tMflops\tEtree\tEquil\tRcond\tRefine\n");
                    printf("PERF:%8.2f%8.2f%8.2f%8.2f%8.2f%8.2f%8.2f%8.2f\n",
	                   utime[int(PhaseType::FACT)], ops[int(PhaseType::FACT)]*1e-6/utime[int(PhaseType::FACT)],
	                   utime[int(PhaseType::SOLVE)], ops[int(PhaseType::SOLVE)]*1e-6/utime[int(PhaseType::SOLVE)],
	                   utime[int(PhaseType::ETREE)], utime[int(PhaseType::EQUIL)], utime[int(PhaseType::RCOND)], utime[int(PhaseType::REFINE)]);
    
                    printf("\tRpg\t\tRcond\t\tFerr\t\tBerr\t\tEquil?\n");
                    printf("NUM:\t%e\t%e\t%e\t%e\t%s\n",
	                   rpg, rcond, ferr[0], berr[0], equed);
    
                #if 0

                    printf("\tTRSV (total%%)\tGEMV (total%%)\tfloat_time%%\tmax_n\tmax_m\tmin_n\tmin_m\tavg_n\tavg_m\n");
                    printf("BLAS:\t%.0f  %.2f\t%.0f  %.2f\t%.2f\t\t%d\t%d\t%d\t%d\t%.0f\t%.0f\n",
	                   ops[int(PhaseType::TRSV)], ops[int(PhaseType::TRSV)]/ops[int(PhaseType::FACT)], ops[int(PhaseType::GEMV)], ops[int(PhaseType::GEMV)]/ops[int(PhaseType::FACT)],
	                   utime[int(PhaseType::FLOAT)]/utime[int(PhaseType::FACT)],
	                   max_blas_n, max_gemv_m, min_blas_n, min_gemv_m,
	                   (float)sum_blas_n/num_blas, (float)sum_gemv_m/num_blas);
                    printf("\tRCOND\tREFINE\tFERR\n");
                    printf("SOLVES:\t%d\t%d\t%d\n", no_solves[PhaseType::RCOND],no_solves[PhaseType::REFINE], no_solves[PhaseType::FERR]);
    
                    flops_dist_for_matlab();

                #endif
    
                }


                int print_complex_vec(char *what, int n, int *ind, complex *vec)
                {
                    int i;
                    printf("%s: n %d\n", what, n);
                    for (i = 0; i < n; ++i) printf("%d\t%f%f\n", ind[i], vec[i].r, vec[i].i);
                    return 0;
                }

            };
        };
    };
};

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Architect Sea Surveillance AS
Norway Norway
Chief Architect - Sea Surveillance AS.

Specializing in integrated operations and high performance computing solutions.

I’ve been fooling around with computers since the early eighties, I’ve even done work on CP/M and MP/M.

Wrote my first “real” program on a BBC micro model B based on a series in a magazine at that time. It was fun and I got hooked on this thing called programming ...

A few Highlights:

  • High performance application server development
  • Model Driven Architecture and Code generators
  • Real-Time Distributed Solutions
  • C, C++, C#, Java, TSQL, PL/SQL, Delphi, ActionScript, Perl, Rexx
  • Microsoft SQL Server, Oracle RDBMS, IBM DB2, PostGreSQL
  • AMQP, Apache qpid, RabbitMQ, Microsoft Message Queuing, IBM WebSphereMQ, Oracle TuxidoMQ
  • Oracle WebLogic, IBM WebSphere
  • Corba, COM, DCE, WCF
  • AspenTech InfoPlus.21(IP21), OsiSoft PI


More information about what I do for a living can be found at: harlinn.com or LinkedIn

You can contact me at espen@harlinn.no

Comments and Discussions