Click here to Skip to main content
15,881,172 members
Articles / Multimedia / DirectX

Rendering Text with Direct2D & DirectWrite

Rate me:
Please Sign up or sign in to vote.
4.94/5 (39 votes)
3 Jan 2015CPOL8 min read 105.3K   2.8K   76  
Direct2D, DirectWrite, Windows API, C++, std::shared_ptr and more
#include "stdafx.h"

#include <stdio.h>
#include <stdlib.h>
#include "hnum_pssp_defs.h"

namespace harlinn
{
    namespace numerics
    {
        namespace SuperLU
        {
            namespace Single
            {

                void
                psgstrf_bmod1D(
	                       const int pnum,  /* process number */
	                       const int m,     /* number of rows in the matrix */
	                       const int w,     /* current panel width */
	                       const int jcol,  /* leading column of the current panel */
	                       const int fsupc, /* leading column of the updating supernode */ 
	                       const int krep,  /* last column of the updating supernode */ 
	                       const int nsupc, /* number of columns in the updating s-node */ 
	                       int nsupr, /* number of rows in the updating supernode */  
	                       int nrow,  /* number of rows below the diagonal block of
			                     the updating supernode */ 
	                       int *repfnz,     /* in */
	                       int *panel_lsub, /* modified */
	                       int *w_lsub_end, /* modified */
	                       int *spa_marker, /* modified; size n-by-w */
	                       float *dense,   /* modified */
	                       float *tempv,   /* working array - zeros on entry/exit */
	                       GlobalLU_t *Glu, /* modified */
	                       Gstat_t *Gstat   /* modified */
	                       )
                {
                /*
                 * -- SuperLU MT routine (version 2.0) --
                 * Lawrence Berkeley National Lab,  Univ. of California Berkeley,
                 * and Xerox Palo Alto Research Center.
                 * September 10, 2007
                 *
                 * Purpose
                 * =======
                 *
                 *    Performs numeric block updates (sup-panel) in topological order.
                 *    It features: col-col, 2cols-col, 3cols-col, and sup-col updates.
                 *    Results are returned in SPA dense[*,w].
                 *
                 */
                #if ( MACH==CRAY_PVP )
                    _fcd ftcs1 = _cptofcd("L", strlen("L")),
                         ftcs2 = _cptofcd("N", strlen("N")),
                         ftcs3 = _cptofcd("U", strlen("U"));
                #endif
                #ifdef USE_VENDOR_BLAS
                    int          incx = 1, incy = 1;
                    float       alpha, beta;
                #endif

                    float       ukj, ukj1, ukj2;
                    int          luptr, luptr1, luptr2;
                    int          segsze;
                    register int lptr; /* start of row subscripts of the updating supernode */
                    register int i, krep_ind, kfnz, isub, irow, no_zeros;
                    register int jj;	      /* index through each column in the panel */
                    int          *repfnz_col; /* repfnz[] for a column in the panel */
                    float       *dense_col;  /* dense[] for a column in the panel */
                    float      *tempv1;     /* used to store matrix-vector result */
                    int          *col_marker; /* each column of the spa_marker[*,w] */
                    int          *col_lsub;   /* each column of the panel_lsub[*,w] */
                    int          *lsub, *xlsub_end;
                    float       *lusup;
                    int          *xlusup;
                    register float flopcnt;

                    float      zero = 0.0;
                    float      one = 1.0;
    
                #ifdef TIMING
                    double *utime = Gstat->utime;
                    double f_time;
                #endif    
    
                    lsub      = Glu->lsub;
                    xlsub_end = Glu->xlsub_end;
                    lusup     = Glu->lusup;
                    xlusup    = Glu->xlusup;
                    lptr      = Glu->xlsub[fsupc];
                    krep_ind  = lptr + nsupc - 1;

                    /* Pointers to each column of the w-wide arrays. */
                    repfnz_col= repfnz;
                    dense_col = dense;
                    col_marker= spa_marker;
                    col_lsub  = panel_lsub;

                #if ( DEBUGlevel>=2 )
                if (jcol == BADPAN && krep == BADREP) {
                    printf("(%d) psgstrf_bmod1D[1] jcol %d, fsupc %d, krep %d, nsupc %d, nsupr %d, nrow %d\n",
	                   pnum, jcol, fsupc, krep, nsupc, nsupr, nrow);
                    PrintInt10("lsub[xlsub[2774]]", nsupr, &lsub[lptr]);
                }    
                #endif
    
                    /*
                     * Sequence through each column in the panel ...
                     */
                    for (jj = jcol; jj < jcol + w; ++jj, col_marker += m, col_lsub += m,
	                 repfnz_col += m, dense_col += m) {

	                kfnz = repfnz_col[krep];
	                if ( kfnz == EMPTY ) continue;	/* Skip any zero segment */

	                segsze = krep - kfnz + 1;
	                luptr = xlusup[fsupc];

	                /* Calculate flops: tri-solve + mat-vector */
                        flopcnt = segsze * (segsze - 1) + 2 * nrow * segsze;
	                Gstat->procstat[pnum].fcops += flopcnt;

	                /* Case 1: Update U-segment of size 1 -- col-col update */
	                if ( segsze == 1 ) {
                #ifdef TIMING
	                    f_time = SuperLU_timer_();
                #endif	    
	                    ukj = dense_col[lsub[krep_ind]];
	                    luptr += nsupr*(nsupc-1) + nsupc;
                #if ( DEBUGlevel>=2 )
                if (krep == BADCOL && jj == -1) {
                    printf("(%d) psgstrf_bmod1D[segsze=1]: k %d, j %d, ukj %.10e\n",
	                   pnum, lsub[krep_ind], jj, ukj);
                    PrintInt10("segsze=1", nsupr, &lsub[lptr]);
                }
                #endif	    
	                    for (i = lptr + nsupc; i < xlsub_end[fsupc]; i++) {
		                irow = lsub[i];
                                        dense_col[irow] -= ukj * lusup[luptr];
		                ++luptr;
                #ifdef SCATTER_FOUND		
		                if ( col_marker[irow] != jj ) {
		                    col_marker[irow] = jj;
		                    col_lsub[w_lsub_end[jj-jcol]++] = irow;
		                }
                #endif		
	                    }
                #ifdef TIMING
	                    utime[FLOAT] += SuperLU_timer_() - f_time;
                #endif	    
	                } else if ( segsze <= 3 ) {
                #ifdef TIMING
	                    f_time = SuperLU_timer_();
                #endif	    
	                    ukj = dense_col[lsub[krep_ind]];
	                    luptr += nsupr*(nsupc-1) + nsupc-1;
	                    ukj1 = dense_col[lsub[krep_ind - 1]];
	                    luptr1 = luptr - nsupr;
	                    if ( segsze == 2 ) {
                                ukj -= ukj1 * lusup[luptr1];
		                dense_col[lsub[krep_ind]] = ukj;
		                for (i = lptr + nsupc; i < xlsub_end[fsupc]; ++i) {
		                    irow = lsub[i];
		                    ++luptr;  ++luptr1;
                                            dense_col[irow] -= (ukj * lusup[luptr]
                                                                + ukj1 * lusup[luptr1]);
                #ifdef SCATTER_FOUND		
		                    if ( col_marker[irow] != jj ) {
			                col_marker[irow] = jj;
			                col_lsub[w_lsub_end[jj-jcol]++] = irow;
		                    }
                #endif		
		                }
	                    } else {
		                ukj2 = dense_col[lsub[krep_ind - 2]];
		                luptr2 = luptr1 - nsupr;
                                ukj1 -= ukj2 * lusup[luptr2-1];
                                ukj = ukj - ukj1*lusup[luptr1] - ukj2*lusup[luptr2];
		                dense_col[lsub[krep_ind]] = ukj;
		                dense_col[lsub[krep_ind-1]] = ukj1;
		                for (i = lptr + nsupc; i < xlsub_end[fsupc]; ++i) {
		                    irow = lsub[i];
		                    ++luptr; ++luptr1; ++luptr2;
                                    dense_col[irow] -= (ukj * lusup[luptr]
                                             + ukj1*lusup[luptr1] + ukj2*lusup[luptr2]);
                #ifdef SCATTER_FOUND		
		                    if ( col_marker[irow] != jj ) {
			                col_marker[irow] = jj;
			                col_lsub[w_lsub_end[jj-jcol]++] = irow;
		                    }
                #endif		
		                }
	                    }
                #ifdef TIMING
	                    utime[FLOAT] += SuperLU_timer_() - f_time;
                #endif	    
	                } else { /* segsze >= 4 */
	                    /* 
	                     * Perform a triangular solve and matrix-vector update,
	                     * then scatter the result of sup-col update to dense[*].
	                     */
	                    no_zeros = kfnz - fsupc;

	                    /* Gather U[*,j] segment from dense[*] to tempv[*]: 
	                     *   The result of triangular solve is in tempv[*];
	                     *   The result of matrix vector update is in dense_col[*]
	                     */
	                    isub = lptr + no_zeros;
                /*#pragma ivdep*/
	                    for (i = 0; i < segsze; ++i) {
		                irow = lsub[isub];
		                tempv[i] = dense_col[irow]; /* Gather */
		                ++isub;
	                    }

	                    /* start effective triangle */
	                    luptr += nsupr * no_zeros + no_zeros;
                #ifdef TIMING
	                    f_time = SuperLU_timer_();
                #endif
		
                #ifdef USE_VENDOR_BLAS
                #if ( MACH==CRAY_PVP )
	                    STRSV( ftcs1, ftcs2, ftcs3, &segsze, &lusup[luptr], 
		                  &nsupr, tempv, &incx );
                #else
	                    strsv_( "L", "N", "U", &segsze, &lusup[luptr], 
		                   &nsupr, tempv, &incx );
                #endif
		
	                    luptr += segsze;	/* Dense matrix-vector */
	                    tempv1 = &tempv[segsze];

                            alpha = one;
                            beta = zero;
                #if ( MACH==CRAY_PVP )
	                    SGEMV( ftcs2, &nrow, &segsze, &alpha, &lusup[luptr], 
		                  &nsupr, tempv, &incx, &beta, tempv1, &incy );
                #else
	                    sgemv_( "N", &nrow, &segsze, &alpha, &lusup[luptr], 
		                   &nsupr, tempv, &incx, &beta, tempv1, &incy );
                #endif /* _CRAY_PVP */
                #else
	                    slsolve ( nsupr, segsze, &lusup[luptr], tempv );
	    
	                    luptr += segsze;        /* Dense matrix-vector */
	                    tempv1 = &tempv[segsze];
	                    smatvec (nsupr, nrow, segsze, &lusup[luptr], tempv, tempv1);
                #endif
		
                #ifdef TIMING
	                    utime[FLOAT] += SuperLU_timer_() - f_time;
                #endif	    

	                    /* Scatter tempv[*] into SPA dense[*] temporarily, 
	                     * such that tempv[*] can be used for the triangular solve of
	                     * the next column of the panel. They will be copied into 
	                     * ucol[*] after the whole panel has been finished.
	                     */
	                    isub = lptr + no_zeros;
                /*#pragma ivdep*/
	                    for (i = 0; i < segsze; i++) {
		                irow = lsub[isub];
		                dense_col[irow] = tempv[i]; /* Scatter */
		                tempv[i] = zero;
		                isub++;
                #if ( DEBUGlevel>=2 )
	                if (jj == -1 && krep == 3423)
	                    printf("(%d) psgstrf_bmod1D[scatter] jj %d, dense_col[%d] %e\n",
		                   pnum, jj, irow, dense_col[irow]);
                #endif
	                    }
		
	                    /* Scatter the update from tempv1[*] into SPA dense[*] */
                /*#pragma ivdep*/
	                    for (i = 0; i < nrow; i++) {
		                irow = lsub[isub];
                                dense_col[irow] -= tempv1[i]; /* Scatter-add */
                #ifdef SCATTER_FOUND		
		                if ( col_marker[irow] != jj ) {
		                    col_marker[irow] = jj;
		                    col_lsub[w_lsub_end[jj-jcol]++] = irow;
		                }
                #endif		
		                tempv1[i] = zero;
		                isub++;
	                    }
		
	                } /* else segsze >= 4 ... */
	
                    } /* for jj ... */

                }

            };
        };
    };
};

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Architect Sea Surveillance AS
Norway Norway
Chief Architect - Sea Surveillance AS.

Specializing in integrated operations and high performance computing solutions.

I’ve been fooling around with computers since the early eighties, I’ve even done work on CP/M and MP/M.

Wrote my first “real” program on a BBC micro model B based on a series in a magazine at that time. It was fun and I got hooked on this thing called programming ...

A few Highlights:

  • High performance application server development
  • Model Driven Architecture and Code generators
  • Real-Time Distributed Solutions
  • C, C++, C#, Java, TSQL, PL/SQL, Delphi, ActionScript, Perl, Rexx
  • Microsoft SQL Server, Oracle RDBMS, IBM DB2, PostGreSQL
  • AMQP, Apache qpid, RabbitMQ, Microsoft Message Queuing, IBM WebSphereMQ, Oracle TuxidoMQ
  • Oracle WebLogic, IBM WebSphere
  • Corba, COM, DCE, WCF
  • AspenTech InfoPlus.21(IP21), OsiSoft PI


More information about what I do for a living can be found at: harlinn.com or LinkedIn

You can contact me at espen@harlinn.no

Comments and Discussions