Click here to Skip to main content
15,885,767 members
Articles / Desktop Programming / Win32

Windows Development in C++, Working with Menus

Rate me:
Please Sign up or sign in to vote.
4.96/5 (60 votes)
3 Jan 2015CPOL19 min read 171.8K   4.1K   163  
Windows API, menus, C++ lambda expressions, std::enable_shared_from_this
#include "stdafx.h"

#include <stdio.h>
#include <stdlib.h>
#include "hnum_pzsp_defs.h"

#ifndef _MSC_VER

namespace harlinn
{
    namespace numerics
    {
        namespace SuperLU
        {
            namespace DoubleComplex
            {
                void
                pzgstrf_bmod2D_mv2(
		                   const int pnum, /* process number */
		                   const int n,    /* number of rows in the matrix */
		                   const int w,    /* current panel width */
		                   const int jcol, /* leading column of the current panel */
		                   const int fsupc,/* leading column of the updating supernode */
		                   const int krep, /* last column of the updating s-node */
		                   const int nsupc,/* number of columns in the updating s-node */
		                   int nsupr, /* number of rows in the updating s-node */
		                   int nrow,  /* number of rows below the diagonal block of
				                 the updating supernode */
		                   int *repfnz,     /* in */
		                   int *panel_lsub, /* modified */
		                   int *w_lsub_end, /* modified */
		                   int *spa_marker, /* modified; size n-by-w */
		                   doublecomplex *dense,   /* modified */
		                   doublecomplex *tempv,   /* working array - zeros on entry/exit */
		                   GlobalLU_t *Glu, /* modified */
		                   Gstat_t *Gstat   /* modified */
		                   )
                {
                /*
                 * -- SuperLU MT routine (version 2.0) --
                 * Lawrence Berkeley National Lab, Univ. of California Berkeley,
                 * and Xerox Palo Alto Research Center.
                 * September 10, 2007
                 *
                 * Purpose
                 * =======
                 *
                 *    Performs numeric 2-D block updates (sup-panel) in topological order.
                 *    Results are returned in SPA dense[*,w].
                 *
                 */

                    doublecomplex      zero = {0.0, 0.0};
                    doublecomplex      one = {1.0, 0.0};
                    doublecomplex      comp_temp, comp_temp1;

                #if ( MACH==CRAY_PVP )
                    _fcd ftcs1 = _cptofcd("L", strlen("L")),
                         ftcs2 = _cptofcd("N", strlen("N")),
                         ftcs3 = _cptofcd("U", strlen("U"));
                #endif
                #ifdef USE_VENDOR_BLAS
                    int          incx = 1, incy = 1;
                    doublecomplex       alpha = one, beta = zero;
                #endif

                    doublecomplex       ukj, ukj1, ukj2;
                    int          luptr, luptr1, luptr2;
                    int          segsze;
                    int          block_nrow;  /* no of rows in a block row */
                    register int lptr; /* points to the row subscripts of a supernode */
                    int          kfnz, irow, no_zeros; 
                    register int isub, isub1, i, j;
                    register int jj;	      /* index through each column in the panel */
                    int          krep_ind;
                    int          *repfnz_col; /* repfnz[] for a column in the panel */
                    int          *col_marker; /* each column of the spa_marker[*,w] */
                    int          *col_lsub;   /* each column of the panel_lsub[*,w] */
                    doublecomplex       *dense_col;  /* dense[] for a column in the panel */
                    doublecomplex       *TriTmp;
                    register int ldaTmp;
                    register int r_ind, r_hi;
                    static   int first = 1, maxsuper, rowblk;
                    register int twocols;
                    int          kfnz2[2], jj2[2]; /* detect two identical columns */
                    doublecomplex       *tri[2], *matvec[2];
                    int          *lsub, *xlsub_end;
                    doublecomplex       *lusup;
                    int          *xlusup;
                    register float flopcnt;
    
                #ifdef TIMING    
                    double *utime = Gstat->utime;
                    double f_time;
                #endif    
    
                    if ( first ) {
	                maxsuper = sp_ienv(3);
	                rowblk   = sp_ienv(4);
	                first = 0;
                    }
                    ldaTmp = maxsuper + rowblk;

                    lsub      = Glu->lsub;
                    xlsub_end = Glu->xlsub_end;
                    lusup     = Glu->lusup;
                    xlusup    = Glu->xlusup;
                    lptr      = Glu->xlsub[fsupc];
                    krep_ind  = lptr + nsupc - 1;

    
                    /* ---------------------------------------------------------------
                     * Sequence through each column in the panel -- triangular solves.
                     * The results of the triangular solves of all columns in the
                     * panel are temporaroly stored in TriTemp[*] array.
                     * For the unrolled small supernodes of size <= 3, we also perform
                     * matrix-vector updates from below the diagonal block.
                     * ---------------------------------------------------------------
                     */
                    repfnz_col= repfnz;
                    dense_col = dense;
                    TriTmp    = tempv;
                    col_marker= spa_marker;
                    col_lsub  = panel_lsub;
    
                    for (jj = jcol; jj < jcol + w; ++jj, col_marker += n, col_lsub += n,
	                 repfnz_col += n, dense_col += n, TriTmp += ldaTmp ) {

	                kfnz = repfnz_col[krep];
	                if ( kfnz == EMPTY ) continue;	/* Skip any zero segment */
	    
	                segsze = krep - kfnz + 1;
	                luptr = xlusup[fsupc];

                        flopcnt = 4 * segsze * (segsze - 1) + 8 * nrow * segsze;
	                Gstat->procstat[pnum].fcops += flopcnt;

                #ifdef TIMING	    
	                f_time = SuperLU_timer_();
                #endif
	
	                /* Case 1: Update U-segment of size 1 -- col-col update */
	                if ( segsze == 1 ) {
	                    ukj = dense_col[lsub[krep_ind]];
	                    luptr += nsupr*(nsupc-1) + nsupc;
	                    for (i = lptr + nsupc; i < xlsub_end[fsupc]; i++) {
		                irow = lsub[i];
                                zz_mult(&comp_temp, &ukj, &lusup[luptr]);
                                z_sub(&dense_col[irow], &dense_col[irow], &comp_temp);
		                ++luptr;
                #ifdef SCATTER_FOUND		
		                if ( col_marker[irow] != jj ) {
		                    col_marker[irow] = jj;
		                    col_lsub[w_lsub_end[jj-jcol]++] = irow;
		                }
                #endif		
	                    }
                #ifdef TIMING
	                    utime[FLOAT] += SuperLU_timer_() - f_time;
                #endif	    
	                } else if ( segsze <= 3 ) {
	                    ukj = dense_col[lsub[krep_ind]];
	                    ukj1 = dense_col[lsub[krep_ind - 1]];
	                    luptr += nsupr*(nsupc-1) + nsupc-1;
	                    luptr1 = luptr - nsupr;
	                    if ( segsze == 2 ) {
                                zz_mult(&comp_temp, &ukj1, &lusup[luptr1]);
                                z_sub(&ukj, &ukj, &comp_temp);
		                dense_col[lsub[krep_ind]] = ukj;
		                for (i = lptr + nsupc; i < xlsub_end[fsupc]; ++i) {
		                    irow = lsub[i];
		                    luptr++; luptr1++;
                                    zz_mult(&comp_temp, &ukj, &lusup[luptr]);
                                    zz_mult(&comp_temp1, &ukj1, &lusup[luptr1]);
                                    z_add(&comp_temp, &comp_temp, &comp_temp1);
                                    z_sub(&dense_col[irow], &dense_col[irow], &comp_temp);
                #ifdef SCATTER_FOUND		
		                    if ( col_marker[irow] != jj ) {
			                col_marker[irow] = jj;
			                col_lsub[w_lsub_end[jj-jcol]++] = irow;
		                    }
                #endif		
		                }
                #ifdef TIMING
		                utime[FLOAT] += SuperLU_timer_() - f_time;
                #endif	    
	                    } else {
		                ukj2 = dense_col[lsub[krep_ind - 2]];
		                luptr2 = luptr1 - nsupr;
                                zz_mult(&comp_temp, &ukj2, &lusup[luptr2-1]);
                                z_sub(&ukj1, &ukj1, &comp_temp);

                                zz_mult(&comp_temp, &ukj1, &lusup[luptr1]);
                                zz_mult(&comp_temp1, &ukj2, &lusup[luptr2]);
                                z_add(&comp_temp, &comp_temp, &comp_temp1);
                                z_sub(&ukj, &ukj, &comp_temp);
		                dense_col[lsub[krep_ind]] = ukj;
		                dense_col[lsub[krep_ind-1]] = ukj1;
		                for (i = lptr + nsupc; i < xlsub_end[fsupc]; ++i) {
		                    irow = lsub[i];
		                    luptr++; luptr1++; luptr2++;
                                    zz_mult(&comp_temp, &ukj, &lusup[luptr]);
                                    zz_mult(&comp_temp1, &ukj1, &lusup[luptr1]);
                                    z_add(&comp_temp, &comp_temp, &comp_temp1);
                                    zz_mult(&comp_temp1, &ukj2, &lusup[luptr2]);
                                    z_add(&comp_temp, &comp_temp, &comp_temp1);
                                    z_sub(&dense_col[irow], &dense_col[irow], &comp_temp);
                #ifdef SCATTER_FOUND		
		                    if ( col_marker[irow] != jj ) {
			                col_marker[irow] = jj;
			                col_lsub[w_lsub_end[jj-jcol]++] = irow;
		                    }
                #endif		
		                }
	                    }
                #ifdef TIMING
	                    utime[FLOAT] += SuperLU_timer_() - f_time;
                #endif
	                } else  { /* segsze >= 4 */
	                    /* Copy A[*,j] segment from dense[*] to TriTmp[*], which
	                       holds the result of triangular solve.    */
	                    no_zeros = kfnz - fsupc;
	                    isub = lptr + no_zeros;
	                    for (i = 0; i < segsze; ++i) {
		                irow = lsub[isub];
		                TriTmp[i] = dense_col[irow]; /* Gather */
		                ++isub;
	                    }

	                    /* start effective triangle */
	                    luptr += nsupr * no_zeros + no_zeros;
	    
                #ifdef TIMING	    
	                    f_time = SuperLU_timer_();
                #endif
	    
                #ifdef USE_VENDOR_BLAS
                #if ( MACH==CRAY_PVP )
	                    CTRSV( ftcs1, ftcs2, ftcs3, &segsze, &lusup[luptr], 
		                   &nsupr, TriTmp, &incx );
                #else
	                    ztrsv_( "L", "N", "U", &segsze, &lusup[luptr], 
		                   &nsupr, TriTmp, &incx );
                #endif
                #else		
	                    zlsolve ( nsupr, segsze, &lusup[luptr], TriTmp );
                #endif		
                #ifdef TIMING	    
	                    utime[FLOAT] += SuperLU_timer_() - f_time;
                #endif	    
	                } /* else ... */
	    
                    }  /* for jj ... end tri-solves */

                    /* --------------------------------------------------------
                     * Perform block row updates from below the diagonal block.
                     * Push each block all the way into SPA dense[*].
                     * --------------------------------------------------------
                     */
                    for ( r_ind = 0; r_ind < nrow; r_ind += rowblk ) {
	                r_hi = SUPERLU_MIN(nrow, r_ind + rowblk);
	                block_nrow = SUPERLU_MIN(rowblk, r_hi - r_ind);
	                luptr1 = xlusup[fsupc] + nsupc + r_ind;
	                isub1 = lptr + nsupc + r_ind;
	                repfnz_col = repfnz;
	                twocols = 0;
	
	                /* Sequence through each column in the panel -- matrix-vector */
	                for (jj = jcol; jj < jcol + w; ++jj, repfnz_col += n) {

	                    kfnz = repfnz_col[krep];
	                    if ( kfnz == EMPTY ) continue; /* skip zero segment */
	                    segsze = krep - kfnz + 1;
	                    if ( segsze <= 3 ) continue;   /* skip unrolled cases */

	                    /* Now segsze >= 4 ... */
	    
	                    if ( twocols == 1 ) { /* got two columns */
		                jj2[1] = jj;
		                twocols = 0;
		                for (j = 0; j < 2; ++j) {
		                    i = n * (jj2[j] - jcol);
		                    kfnz2[j] = repfnz[i + krep];
		                    tri[j] = tempv + ldaTmp * (jj2[j] - jcol);
		                    matvec[j] = tri[j] + maxsuper;
		                }
		
		                if ( kfnz2[0] < kfnz2[1] ) { /* First column is bigger */
		                    no_zeros = kfnz2[0] - fsupc;
		                    segsze = kfnz2[1] - kfnz2[0];
		                    luptr = luptr1 + nsupr * no_zeros;
                #ifdef USE_VENDOR_BLAS
                #if ( MACH==CRAY_PVP )
		                    CGEMV( ftcs2, &block_nrow, &segsze, &alpha, &lusup[luptr], 
			                   &nsupr, tri[0], &incx, &beta, matvec[0], &incy );
                #else
		                    zgemv_( "N", &block_nrow, &segsze, &alpha, &lusup[luptr], 
			                   &nsupr, tri[0], &incx, &beta, matvec[0], &incy );
                #endif
                #else
		                    zmatvec (nsupr, block_nrow, segsze, &lusup[luptr],
			                     tri[0], matvec[0]);
                #endif
		                } else if ( kfnz2[0] > kfnz2[1] ) {
		                    no_zeros = kfnz2[1] - fsupc;
		                    segsze = kfnz2[0] - kfnz2[1];
		                    luptr = luptr1 + nsupr * no_zeros;
                #ifdef USE_VENDOR_BLAS
                #if ( MACH==CRAY_PVP )
		                    CGEMV( ftcs2, &block_nrow, &segsze, &alpha, &lusup[luptr], 
			                   &nsupr, tri[1], &incx, &beta, matvec[1], &incy );
                #else
		                    zgemv_( "N", &block_nrow, &segsze, &alpha, &lusup[luptr], 
			                   &nsupr, tri[1], &incx, &beta, matvec[1], &incy );
                #endif
                #else
		                    zmatvec (nsupr, block_nrow, segsze, &lusup[luptr],
			                     tri[1], matvec[1]);
                #endif
		                }
		
		                /* Do matrix-vector multiply with two destinations */
		                kfnz = SUPERLU_MAX( kfnz2[0], kfnz2[1] );
		                no_zeros = kfnz - fsupc;
		                segsze = krep - kfnz + 1;
		                luptr = luptr1 + nsupr * no_zeros;
                #if ( MACH==DEC )
		                zgemv2_ (&nsupr, &block_nrow, &segsze, &lusup[luptr],
			                  &tri[0][kfnz-kfnz2[0]], &tri[1][kfnz-kfnz2[1]],
			                  matvec[0], matvec[1]);
		                /*#elif ( MACH==CRAY_PVP )
	                        ZGEMV2(&nsupr, &block_nrow, &segsze, &lusup[luptr],
		                       &tri[0][kfnz-kfnz2[0]], &tri[1][kfnz-kfnz2[1]],
		                       matvec[0], matvec[1]); */
                #else
		                zmatvec2 (nsupr, block_nrow, segsze, &lusup[luptr],
			                  &tri[0][kfnz-kfnz2[0]], &tri[1][kfnz-kfnz2[1]],
			                  matvec[0], matvec[1]);
                #endif

                #ifdef TIMING
		                utime[FLOAT] += SuperLU_timer_() - f_time;
                #endif	    
		                /* end for two destination update */
	                    } else { /* wait for a second column */
		                jj2[0] = jj;
		                twocols = 1;
	                    }

	                } /* for jj ... */

	                if ( twocols == 1 ) { /* one more column left */
	                    i = jj2[0] - jcol;
	                    tri[0] = tempv + ldaTmp * i;
	                    matvec[0] = tri[0] + maxsuper;
	                    kfnz = repfnz[i*n + krep];
	                    no_zeros = kfnz - fsupc;
	                    segsze = krep - kfnz + 1;
	                    luptr = luptr1 + nsupr * no_zeros;
	    
                #ifdef USE_VENDOR_BLAS
                #if ( MACH==CRAY_PVP )
	                    CGEMV( ftcs2, &block_nrow, &segsze, &alpha, &lusup[luptr], 
		                   &nsupr, tri[0], &incx, &beta, matvec[0], &incy );
                #else
	                    zgemv_( "N", &block_nrow, &segsze, &alpha, &lusup[luptr], 
		                   &nsupr, tri[0], &incx, &beta, matvec[0], &incy );
                #endif
                #else
	                    zmatvec(nsupr, block_nrow, segsze, &lusup[luptr],
		                    tri[0], matvec[0]);
                #endif
	                } /* if twocols == 1 */
    
	                /* Scatter matvec[*] into SPA dense[*]. */
	                repfnz_col = repfnz;
	                dense_col = dense;
	                col_marker = spa_marker;
	                col_lsub = panel_lsub;
	                matvec[0] = tempv + maxsuper;
	                for (jj = jcol; jj < jcol + w; ++jj, repfnz_col += n, dense_col += n,
	                     col_marker += n, col_lsub += n, matvec[0] += ldaTmp) {
	                    kfnz = repfnz_col[krep];
	                    if ( kfnz == EMPTY ) continue; /* skip zero segment */
	                    segsze = krep - kfnz + 1;
	                    if ( segsze <= 3 ) continue;   /* skip unrolled cases */

	                    isub = isub1;
	                    for (i = 0; i < block_nrow; ++i) {
		                irow = lsub[isub];
                                z_sub(&dense_col[irow], &dense_col[irow],
                                              &matvec[0][i]); /* Scatter-add */
                #ifdef SCATTER_FOUND		
		                if ( col_marker[irow] != jj ) {
		                    col_marker[irow] = jj;
		                    col_lsub[w_lsub_end[jj-jcol]++] = irow;
		                }
                #endif		
		                matvec[0][i] = zero;
		                ++isub;
	                    }
	                } /* for jj ... */
	
                    } /* for each block row ... */

    
                    /* ------------------------------------------------
                       Scatter the triangular solves into SPA dense[*].
                       ------------------------------------------------ */
                    repfnz_col = repfnz;
                    dense_col = dense;
                    TriTmp = tempv;
                    for (jj = 0; jj < w; ++jj, repfnz_col += n,
	                 dense_col += n, TriTmp += ldaTmp) {
	                kfnz = repfnz_col[krep];
	                if ( kfnz == EMPTY ) continue; /* skip any zero segment */
	                segsze = krep - kfnz + 1;
	                if ( segsze <= 3 ) continue;   /* skip unrolled cases */
	
	                no_zeros = kfnz - fsupc;		
	                isub = lptr + no_zeros;
	                for (i = 0; i < segsze; i++) {
	                    irow = lsub[isub];
	                    dense_col[irow] = TriTmp[i]; /* Scatter */
	                    TriTmp[i] = zero;
	                    ++isub;
	                }
                    } /* for jj ... */
	
                }

            };
        };
    };
};
#endif

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Architect Sea Surveillance AS
Norway Norway
Chief Architect - Sea Surveillance AS.

Specializing in integrated operations and high performance computing solutions.

I’ve been fooling around with computers since the early eighties, I’ve even done work on CP/M and MP/M.

Wrote my first “real” program on a BBC micro model B based on a series in a magazine at that time. It was fun and I got hooked on this thing called programming ...

A few Highlights:

  • High performance application server development
  • Model Driven Architecture and Code generators
  • Real-Time Distributed Solutions
  • C, C++, C#, Java, TSQL, PL/SQL, Delphi, ActionScript, Perl, Rexx
  • Microsoft SQL Server, Oracle RDBMS, IBM DB2, PostGreSQL
  • AMQP, Apache qpid, RabbitMQ, Microsoft Message Queuing, IBM WebSphereMQ, Oracle TuxidoMQ
  • Oracle WebLogic, IBM WebSphere
  • Corba, COM, DCE, WCF
  • AspenTech InfoPlus.21(IP21), OsiSoft PI


More information about what I do for a living can be found at: harlinn.com or LinkedIn

You can contact me at espen@harlinn.no

Comments and Discussions