Click here to Skip to main content
15,886,689 members
Articles / Mobile Apps / Android

One-Touch Casual 3D Game Based on OpenGL ES 2.0 3D Engine with Lua, Bullet, and Vorbis Support

Rate me:
Please Sign up or sign in to vote.
4.75/5 (7 votes)
8 Nov 2012CPOL5 min read 50.1K   3.3K   18  
Android-x86 native game-engine - without JNI
#ifndef VECTOR3_H_
#define VECTOR3_H_

namespace gameplay
{

class Matrix;
class Quaternion;

/**
 * Defines a 3-element floating point vector.
 *
 * When using a vector to represent a surface normal,
 * the vector should typically be normalized.
 * Other uses of directional vectors may wish to leave
 * the magnitude of the vector intact. When used as a point,
 * the elements of the vector represent a position in 3D space.
 */
class Vector3
{
public:

    /**
     * The x-coordinate.
     */
    float x;

    /**
     * The y-coordinate.
     */
    float y;

    /**
     * The z-coordinate.
     */
    float z;

    /**
     * Constructs a new vector initialized to all zeros.
     */
    Vector3();

    /**
     * Constructs a new vector initialized to the specified values.
     *
     * @param x The x coordinate.
     * @param y The y coordinate.
     * @param z The z coordinate.
     */
    Vector3(float x, float y, float z);

    /**
     * Constructs a new vector from the values in the specified array.
     *
     * @param array An array containing the elements of the vector in the order x, y, z.
     */
    Vector3(const float* array);

    /**
     * Constructs a vector that describes the direction between the specified points.
     *
     * @param p1 The first point.
     * @param p2 The second point.
     */
    Vector3(const Vector3& p1, const Vector3& p2);

    /**
     * Constructs a new vector that is a copy of the specified vector.
     *
     * @param copy The vector to copy.
     */
    Vector3(const Vector3& copy);

    /**
     * Creates a new vector from an integer interpreted as an RGB value.
     * E.g. 0xff0000 represents red or the vector (1, 0, 0).
     *
     * @param color The integer to interpret as an RGB value.
     *
     * @return A vector corresponding to the interpreted RGB color.
     */
    static Vector3 fromColor(unsigned int color);

    /**
     * Destructor.
     */
    ~Vector3();

    /**
     * Returns the zero vector.
     *
     * @return The 3-element vector of 0s.
     */
    static const Vector3& zero();

    /**
     * Returns the one vector.
     *
     * @return The 3-element vector of 1s.
     */
    static const Vector3& one();

    /**
     * Returns the unit x vector.
     *
     * @return The 3-element unit vector along the x axis.
     */
    static const Vector3& unitX();

    /**
     * Returns the unit y vector.
     *
     * @return The 3-element unit vector along the y axis.
     */
    static const Vector3& unitY();

    /**
     * Returns the unit z vector.
     *
     * @return The 3-element unit vector along the z axis.
     */
    static const Vector3& unitZ();

    /**
     * Indicates whether this vector contains all zeros.
     *
     * @return true if this vector contains all zeros, false otherwise.
     */
    bool isZero() const;

    /**
     * Indicates whether this vector contains all ones.
     *
     * @return true if this vector contains all ones, false otherwise.
     */
    bool isOne() const;

    /**
     * Returns the angle (in radians) between the specified vectors.
     *
     * @param v1 The first vector.
     * @param v2 The second vector.
     * 
     * @return The angle between the two vectors (in radians).
     */
    static float angle(const Vector3& v1, const Vector3& v2);


    /**
     * Adds the elements of the specified vector to this one.
     *
     * @param v The vector to add.
     */
    void add(const Vector3& v);

    /**
     * Adds the specified vectors and stores the result in dst.
     *
     * @param v1 The first vector.
     * @param v2 The second vector.
     * @param dst A vector to store the result in.
     */
    static void add(const Vector3& v1, const Vector3& v2, Vector3* dst);

    /**
     * Clamps this vector within the specified range.
     *
     * @param min The minimum value.
     * @param max The maximum value.
     */
    void clamp(const Vector3& min, const Vector3& max);

    /**
     * Clamps the specified vector within the specified range and returns it in dst.
     *
     * @param v The vector to clamp.
     * @param min The minimum value.
     * @param max The maximum value.
     * @param dst A vector to store the result in.
     */
    static void clamp(const Vector3& v, const Vector3& min, const Vector3& max, Vector3* dst);

    /**
     * Sets this vector to the cross product between itself and the specified vector.
     *
     * @param v The vector to compute the cross product with.
     */
    void cross(const Vector3& v);

    /**
     * Computes the cross product of the specified vectors and stores the result in dst.
     *
     * @param v1 The first vector.
     * @param v2 The second vector.
     * @param dst A vector to store the result in.
     */
    static void cross(const Vector3& v1, const Vector3& v2, Vector3* dst);

    /**
     * Returns the distance between this vector and v.
     *
     * @param v The other vector.
     * 
     * @return The distance between this vector and v.
     * 
     * @see distanceSquared
     */
    float distance(const Vector3& v) const;

    /**
     * Returns the squared distance between this vector and v.
     *
     * When it is not necessary to get the exact distance between
     * two vectors (for example, when simply comparing the
     * distance between different vectors), it is advised to use
     * this method instead of distance.
     *
     * @param v The other vector.
     * 
     * @return The squared distance between this vector and v.
     * 
     * @see distance
     */
    float distanceSquared(const Vector3& v) const;

    /**
     * Returns the dot product of this vector and the specified vector.
     *
     * @param v The vector to compute the dot product with.
     * 
     * @return The dot product.
     */
    float dot(const Vector3& v) const;

    /**
     * Returns the dot product between the specified vectors.
     *
     * @param v1 The first vector.
     * @param v2 The second vector.
     * 
     * @return The dot product between the vectors.
     */
    static float dot(const Vector3& v1, const Vector3& v2);

    /**
     * Computes the length of this vector.
     *
     * @return The length of the vector.
     * 
     * @see lengthSquared
     */
    float length() const;

    /**
     * Returns the squared length of this vector.
     *
     * When it is not necessary to get the exact length of a
     * vector (for example, when simply comparing the lengths of
     * different vectors), it is advised to use this method
     * instead of length.
     *
     * @return The squared length of the vector.
     * 
     * @see length
     */
    float lengthSquared() const;

    /**
     * Negates this vector.
     */
    void negate();

    /**
     * Normalizes this vector.
     *
     * This method normalizes this Vector3 so that it is of
     * unit length (in other words, the length of the vector
     * after calling this method will be 1.0f). If the vector
     * already has unit length or if the length of the vector
     * is zero, this method does nothing.
     * 
     * @return This vector, after the normalization occurs.
     */
    Vector3& normalize();

    /**
     * Normalizes this vector and stores the result in dst.
     *
     * If the vector already has unit length or if the length
     * of the vector is zero, this method simply copies the
     * current vector into dst.
     *
     * @param dst The destination vector.
     */
    void normalize(Vector3* dst) const;

    /**
     * Scales all elements of this vector by the specified value.
     *
     * @param scalar The scalar value.
     */
    void scale(float scalar);

    /**
     * Sets the elements of this vector to the specified values.
     *
     * @param x The new x coordinate.
     * @param y The new y coordinate.
     * @param z The new z coordinate.
     */
    void set(float x, float y, float z);

    /**
     * Sets the elements of this vector from the values in the specified array.
     *
     * @param array An array containing the elements of the vector in the order x, y, z.
     */
    void set(const float* array);

    /**
     * Sets the elements of this vector to those in the specified vector.
     *
     * @param v The vector to copy.
     */
    void set(const Vector3& v);

    /**
     * Sets this vector to the directional vector between the specified points.
     */
    void set(const Vector3& p1, const Vector3& p2);

    /**
     * Subtracts this vector and the specified vector as (this - v)
     * and stores the result in this vector.
     *
     * @param v The vector to subtract.
     */
    void subtract(const Vector3& v);

    /**
     * Subtracts the specified vectors and stores the result in dst.
     * The resulting vector is computed as (v1 - v2).
     *
     * @param v1 The first vector.
     * @param v2 The second vector.
     * @param dst The destination vector.
     */
    static void subtract(const Vector3& v1, const Vector3& v2, Vector3* dst);

    /**
     * Updates this vector towards the given target using a smoothing function.
     * The given response time determines the amount of smoothing (lag). A longer
     * response time yields a smoother result and more lag. To force this vector to
     * follow the target closely, provide a response time that is very small relative
     * to the given elapsed time.
     *
     * @param target target value.
     * @param elapsedTime elapsed time between calls.
     * @param responseTime response time (in the same units as elapsedTime).
     */
    void smooth(const Vector3& target, float elapsedTime, float responseTime);

    /**
     * Calculates the sum of this vector with the given vector.
     * 
     * Note: this does not modify this vector.
     * 
     * @param v The vector to add.
     * @return The vector sum.
     */
    inline const Vector3 operator+(const Vector3& v) const;

    /**
     * Adds the given vector to this vector.
     * 
     * @param v The vector to add.
     * @return This vector, after the addition occurs.
     */
    inline Vector3& operator+=(const Vector3& v);

    /**
     * Calculates the difference of this vector with the given vector.
     * 
     * Note: this does not modify this vector.
     * 
     * @param v The vector to subtract.
     * @return The vector difference.
     */
    inline const Vector3 operator-(const Vector3& v) const;

    /**
     * Subtracts the given vector from this vector.
     * 
     * @param v The vector to subtract.
     * @return This vector, after the subtraction occurs.
     */
    inline Vector3& operator-=(const Vector3& v);

    /**
     * Calculates the negation of this vector.
     * 
     * Note: this does not modify this vector.
     * 
     * @return The negation of this vector.
     */
    inline const Vector3 operator-() const;

    /**
     * Calculates the scalar product of this vector with the given value.
     * 
     * Note: this does not modify this vector.
     * 
     * @param x The value to scale by.
     * @return The scaled vector.
     */
    inline const Vector3 operator*(float x) const;

    /**
     * Scales this vector by the given value.
     * 
     * @param x The value to scale by.
     * @return This vector, after the scale occurs.
     */
    inline Vector3& operator*=(float x);

    /**
     * Determines if this vector is less than the given vector.
     * 
     * @param v The vector to compare against.
     * 
     * @return True if this vector is less than the given vector, false otherwise.
     */
    inline bool operator<(const Vector3& v) const;

    /**
     * Determines if this vector is equal to the given vector.
     * 
     * @param v The vector to compare against.
     * 
     * @return True if this vector is equal to the given vector, false otherwise.
     */
    inline bool operator==(const Vector3& v) const;

    /**
     * Determines if this vector is not equal to the given vector.
     * 
     * @param v The vector to compare against.
     * 
     * @return True if this vector is not equal to the given vector, false otherwise.
     */
    inline bool operator!=(const Vector3& v) const;
};

/**
 * Calculates the scalar product of the given vector with the given value.
 * 
 * @param x The value to scale by.
 * @param v The vector to scale.
 * @return The scaled vector.
 */
inline const Vector3 operator*(float x, const Vector3& v);

}

#include "Vector3.inl"

#endif

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
India India
This member has not yet provided a Biography. Assume it's interesting and varied, and probably something to do with programming.

Comments and Discussions