Click here to Skip to main content
15,881,882 members
Articles / Web Development / HTML

Mouse Gestures for Internet Explorer

Rate me:
Please Sign up or sign in to vote.
4.84/5 (99 votes)
21 Sep 200514 min read 1.3M   13.4K   235  
Adding mouse gesture recognition to Internet Explorer.
/*
 Copyright (c) 2001 
 Author: Konstantin Boukreev 
 E-mail: konstantin@mail.primorye.ru 

 Created: 18.10.2001 16:30:36
 Version: 1.0.0

*/

#include "StdAfx.h"
#include "MLNet.h"
#include <math.h>

MLNet::MLNet(unsigned l_size, ...)
{
	set_transfer_function(0);
	set_minmax(.0, 1.);
	set_bias(1.);

	_ASSERTE(l_size >= 2); 
	
	m_layers.resize(l_size);

	unsigned number_of_weights = 0;
	unsigned t = 0;

	va_list arg;
	va_start(arg, l_size);
	for (unsigned i = 0; i < m_layers.size(); ++i)
	{
		m_layers[i] = va_arg(arg, unsigned);
		number_of_weights +=  (t * m_layers[i]);
		t = m_layers[i] + 1;	// add bias	
	}		
	va_end(arg);

	m_weights.resize(number_of_weights);
}

void MLNet::propagate(array_t& in_synapsis, array_t& out_axons)
{
	array_t::iterator  w = m_weights.begin();
	layers_t::iterator l = m_layers.begin();
	
	// an input layer
	_ASSERTE(in_synapsis.size() == *l);
	++l;

	// a second layer
	out_axons.resize(*l);
	propagate_layer(in_synapsis.begin(), in_synapsis.end(), out_axons.begin(), out_axons.end(), w);
	++l;
		
	// a next layers if any
	for (; l != m_layers.end(); ++l)
	{
		in_synapsis.swap(out_axons);
		out_axons.resize(*l);
		propagate_layer(in_synapsis.begin(), in_synapsis.end(), out_axons.begin(), out_axons.end(), w);
	}
		
	_ASSERTE(w == m_weights.end());
}

void MLNet::propagate_layer(array_t::iterator i_begin, array_t::iterator i_end,
		array_t::iterator o_begin, array_t::iterator o_end,	array_t::iterator& w)
{
	typedef array_t::iterator iterator;	
	array_t::value_type v;
	
	for (iterator o = o_begin; o != o_end; ++o)
	{				
		// bias		
		v = ((*w) * m_r * m_bias) / m_r;
		++w;
		
		for (iterator i = i_begin; i != i_end; ++i, ++w)		
		{		
			v += (((*i) * m_r) * ((*w) * m_r)) / m_r;					
		}		

		if (m_fn) 
		{		
			*o = m_fn(v);			// transfer function		
			_ASSERTE(*o >=  m_min);
			_ASSERTE(*o <=  m_max);
		}
		else *o = v;	
	}	
}

/////////////////////////////////////////////////////////


MLNet::Learn::Learn(MLNet& net, fn_derivative fd)
	: m_net(net), m_fd(fd)
{
	unsigned number_of_neurons = 0;
	for (layers_t::iterator l = (m_net.m_layers.begin() + 1); l != m_net.m_layers.end(); ++l)
		number_of_neurons += (*l);

	m_errors.resize(number_of_neurons);
	m_deltas.resize(m_net.m_weights.size());
}

void MLNet::Learn::propagate(array_t& in_synapsis, array_t& out_axons)
{
	// learn mode
	array_t::iterator  w = m_net.m_weights.begin();
	layers_t::iterator l = m_net.m_layers.begin();
	
	 // an input layer
	_ASSERTE(in_synapsis.size() == *l);
	++l;

	// a second layer
	out_axons.resize(*l);
	m_net.propagate_layer(in_synapsis.begin(), in_synapsis.end(), out_axons.begin(), out_axons.end(), w);
	++l;
	
	// a next layers if any
	array_t::iterator o_begin = out_axons.begin();
	array_t::iterator o_end   = out_axons.end();
	array_t::iterator i_begin, i_end;
	unsigned n_begin, n_end;
			
	for (; l != m_net.m_layers.end(); ++l)
	{	
		n_begin = o_begin  - out_axons.begin();
		n_end   = o_end	   - out_axons.begin();		
				
		out_axons.resize(out_axons.size() + *l);
					
		i_begin = out_axons.begin() + n_begin;
		i_end   = out_axons.begin() + n_end;
		o_begin = i_end;
		o_end   = out_axons.end();

		_ASSERTE(o_begin == (out_axons.begin() + out_axons.size() - *l));
				
		m_net.propagate_layer(i_begin, i_end, o_begin, o_end, w);
	}
	
	_ASSERTE(w == m_net.m_weights.end());
}

void MLNet::Learn::compute_errors(array_t& v_out, array_t& v_ideal)
{
	typedef array_t::reverse_iterator reverse_iterator;	

	reverse_iterator o = v_out.rbegin(); 
	reverse_iterator e = m_errors.rbegin(); 
	reverse_iterator w = m_net.m_weights.rbegin();

	// output layer
	for (reverse_iterator x = v_ideal.rbegin(); x != v_ideal.rend(); ++x, ++o, ++e)
	{	
		*e = ((*x) - (*o)) * m_fd(*o);
	//	*e = ((*o) - (*x)) * m_fd(*o);
	}

	// hidden layers
	
	typedef layers_t::reverse_iterator reverse_layer;
	reverse_layer l		= m_net.m_layers.rbegin();
	reverse_layer l_end = m_net.m_layers.rend();
		
	--l_end; // skips a input layer
	#ifdef _DEBUG
	unsigned l_input_size = *l_end;
	#endif // _DEBUG
			
	reverse_iterator ne_begin = m_errors.rbegin();
	reverse_iterator ne_end   = ne_begin + *l;
	
	unsigned nl_size = *l;
	++l;	// skips the output's layer too (already computed)

	for (; l != l_end; ++l)
	{	
		reverse_iterator te = e;		// remember the start of this layer
				
		// for every neuron into layer
		for (unsigned n = 0; n < *l; ++n, ++e, ++o, ++w)
		{			
			double dsum = .0;
			reverse_iterator nw = w;			
			for (reverse_iterator ne = ne_begin; ne != ne_end; ++ne)
			{
				dsum += ((*ne) * (*nw));
				nw += (*l + 1); // skip bias 
			}
			
			*e = value_t(dsum * m_fd(*o));
		}		
									
		ne_begin = te;
		ne_end   = ne_begin + *l;		

		// shift w		
		w += ((*l) + 1) * (nl_size - 1) + 1;
		nl_size = *l;
	}
	
	_ASSERTE(e == m_errors.rend());	
	_ASSERTE(o == v_out.rend());
	_ASSERTE(w == (m_net.m_weights.rend() - (l_input_size * nl_size + nl_size)));
}

void MLNet::Learn::compute_deltas(array_t& v_out, double M, double N)
{	
	typedef array_t::iterator iterator;	
	iterator e = m_errors.begin();
	iterator o = v_out.begin();
	iterator d = m_deltas.begin();

	typedef layers_t::iterator layer;
	layer l = m_net.m_layers.begin();
	unsigned pl_size = *l;
	++l; // skips a input layer
	
	for (; l != m_net.m_layers.end(); ++l)
	{					
		// for every neuron into layer 
		for (unsigned n = 0; n < *l; ++n, ++e)
		{
			// bias
			*d = delta(N, M, *d, *e, m_net.m_bias);			
			++d;

			iterator po = o;
			for (unsigned k = 0; k < pl_size; ++k, ++d, ++po)
			{			
				*d = delta(N, M, *d, *e, *po);
			}
		}		

		o += pl_size;
		pl_size = *l;		
	}

	_ASSERTE(e == m_errors.end());	
	_ASSERTE(o == v_out.end());
	_ASSERTE(d == m_deltas.end());
}

void MLNet::Learn::update()
{
	typedef array_t::iterator iterator;		
	iterator d = m_deltas.begin();

	for (iterator w = m_net.m_weights.begin(); w != m_net.m_weights.end(); ++w, ++d)
	{
		*w += *d;
	}

	_ASSERTE(d == m_deltas.end());
}

void MLNet::Learn::epoch(array_t& v_in, array_t& v_ideal, double N, double M)
{
	// in fact back-propagation	

	array_t v_out;	
	propagate(v_in, v_out);				
	compute_errors(v_out, v_ideal);
	v_out.insert(v_out.begin(), v_in.begin(), v_in.end());
	v_out.resize(v_out.size() - m_net.m_layers.back());
	compute_deltas(v_out, M, N);
	update();	
}

void MLNet::Learn::run(unsigned cycles, double N0, double N1, double M)
{
	randomize_weigths(- .25, .25);
	
	array_t v_in(m_net.m_layers.front());
	array_t v_ideal(m_net.m_layers.back());

	double dN = (N0 - N1) / cycles;	 
//	double tN = N0;

	for (unsigned i = 0; i < cycles; ++i)
	{		
		if (!get(0, i, v_in, v_ideal))
			return; // stop learning
		epoch(v_in, v_ideal, N0, M);

		_ASSERTE(v_in.size() == m_net.m_layers.front());
		_ASSERTE(v_ideal.size() == m_net.m_layers.back());
		
		#if 0		
		// is-c0nverged
		// change N
		if (N0 < tN  && 
			check_convergence(0.0001))
		{				
			tN = N0 * N0;
			N0 = sqrt(N0);
			if (cycles != i)
				dN = (N0 - N1) / (cycles - i);
		}
		#endif

		N0 -= dN;	
	}
}

void MLNet::Learn::randomize_weigths(float lo, float hi)
{	
	for (array_t::iterator i = m_net.m_weights.begin(); i != m_net.m_weights.end(); ++i)
	{
		*i = lo + ((float)rand() / RAND_MAX) * (hi - lo);
		_ASSERTE(*i >= lo);
		_ASSERTE(*i <= hi);
	}		
}

bool MLNet::Learn::check_convergence(double limit)
{		
	for (array_t::iterator d = m_deltas.begin(); d != m_deltas.end(); ++d)
	{
		if (fabs(*d) > limit) return false;
	}
	return true;
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article has no explicit license attached to it but may contain usage terms in the article text or the download files themselves. If in doubt please contact the author via the discussion board below.

A list of licenses authors might use can be found here


Written By
Web Developer
United Kingdom United Kingdom
This member has not yet provided a Biography. Assume it's interesting and varied, and probably something to do with programming.

Comments and Discussions