Click here to Skip to main content
15,891,905 members
Articles / Programming Languages / C++

Capturing Video from Web-camera on Windows 7 and 8 by using Media Foundation

Rate me:
Please Sign up or sign in to vote.
4.96/5 (25 votes)
10 Apr 2013CPOL5 min read 281K   33.1K   71  
Simple lib for capturing video from web-camera by using Media Foundation
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/

#ifndef OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
#define OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_

#include <algorithm>
#include <map>
#include <cassert>
#include <cstring>

#include "general.h"
#include "nn_index.h"
#include "matrix.h"
#include "result_set.h"
#include "heap.h"
#include "allocator.h"
#include "random.h"
#include "saving.h"

namespace cvflann
{

struct KDTreeSingleIndexParams : public IndexParams
{
    KDTreeSingleIndexParams(int leaf_max_size = 10, bool reorder = true, int dim = -1)
    {
        (*this)["algorithm"] = FLANN_INDEX_KDTREE_SINGLE;
        (*this)["leaf_max_size"] = leaf_max_size;
        (*this)["reorder"] = reorder;
        (*this)["dim"] = dim;
    }
};


/**
 * Randomized kd-tree index
 *
 * Contains the k-d trees and other information for indexing a set of points
 * for nearest-neighbor matching.
 */
template <typename Distance>
class KDTreeSingleIndex : public NNIndex<Distance>
{
public:
    typedef typename Distance::ElementType ElementType;
    typedef typename Distance::ResultType DistanceType;


    /**
     * KDTree constructor
     *
     * Params:
     *          inputData = dataset with the input features
     *          params = parameters passed to the kdtree algorithm
     */
    KDTreeSingleIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeSingleIndexParams(),
                      Distance d = Distance() ) :
        dataset_(inputData), index_params_(params), distance_(d)
    {
        size_ = dataset_.rows;
        dim_ = dataset_.cols;
        int dim_param = get_param(params,"dim",-1);
        if (dim_param>0) dim_ = dim_param;
        leaf_max_size_ = get_param(params,"leaf_max_size",10);
        reorder_ = get_param(params,"reorder",true);

        // Create a permutable array of indices to the input vectors.
        vind_.resize(size_);
        for (size_t i = 0; i < size_; i++) {
            vind_[i] = (int)i;
        }
    }

    KDTreeSingleIndex(const KDTreeSingleIndex&);
    KDTreeSingleIndex& operator=(const KDTreeSingleIndex&);

    /**
     * Standard destructor
     */
    ~KDTreeSingleIndex()
    {
        if (reorder_) delete[] data_.data;
    }

    /**
     * Builds the index
     */
    void buildIndex()
    {
        computeBoundingBox(root_bbox_);
        root_node_ = divideTree(0, (int)size_, root_bbox_ );   // construct the tree

        if (reorder_) {
            delete[] data_.data;
            data_ = cvflann::Matrix<ElementType>(new ElementType[size_*dim_], size_, dim_);
            for (size_t i=0; i<size_; ++i) {
                for (size_t j=0; j<dim_; ++j) {
                    data_[i][j] = dataset_[vind_[i]][j];
                }
            }
        }
        else {
            data_ = dataset_;
        }
    }

    flann_algorithm_t getType() const
    {
        return FLANN_INDEX_KDTREE_SINGLE;
    }


    void saveIndex(FILE* stream)
    {
        save_value(stream, size_);
        save_value(stream, dim_);
        save_value(stream, root_bbox_);
        save_value(stream, reorder_);
        save_value(stream, leaf_max_size_);
        save_value(stream, vind_);
        if (reorder_) {
            save_value(stream, data_);
        }
        save_tree(stream, root_node_);
    }


    void loadIndex(FILE* stream)
    {
        load_value(stream, size_);
        load_value(stream, dim_);
        load_value(stream, root_bbox_);
        load_value(stream, reorder_);
        load_value(stream, leaf_max_size_);
        load_value(stream, vind_);
        if (reorder_) {
            load_value(stream, data_);
        }
        else {
            data_ = dataset_;
        }
        load_tree(stream, root_node_);


        index_params_["algorithm"] = getType();
        index_params_["leaf_max_size"] = leaf_max_size_;
        index_params_["reorder"] = reorder_;
    }

    /**
     *  Returns size of index.
     */
    size_t size() const
    {
        return size_;
    }

    /**
     * Returns the length of an index feature.
     */
    size_t veclen() const
    {
        return dim_;
    }

    /**
     * Computes the inde memory usage
     * Returns: memory used by the index
     */
    int usedMemory() const
    {
        return (int)(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int));  // pool memory and vind array memory
    }


    /**
     * \brief Perform k-nearest neighbor search
     * \param[in] queries The query points for which to find the nearest neighbors
     * \param[out] indices The indices of the nearest neighbors found
     * \param[out] dists Distances to the nearest neighbors found
     * \param[in] knn Number of nearest neighbors to return
     * \param[in] params Search parameters
     */
    void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
    {
        assert(queries.cols == veclen());
        assert(indices.rows >= queries.rows);
        assert(dists.rows >= queries.rows);
        assert(int(indices.cols) >= knn);
        assert(int(dists.cols) >= knn);

        KNNSimpleResultSet<DistanceType> resultSet(knn);
        for (size_t i = 0; i < queries.rows; i++) {
            resultSet.init(indices[i], dists[i]);
            findNeighbors(resultSet, queries[i], params);
        }
    }

    IndexParams getParameters() const
    {
        return index_params_;
    }

    /**
     * Find set of nearest neighbors to vec. Their indices are stored inside
     * the result object.
     *
     * Params:
     *     result = the result object in which the indices of the nearest-neighbors are stored
     *     vec = the vector for which to search the nearest neighbors
     *     maxCheck = the maximum number of restarts (in a best-bin-first manner)
     */
    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
    {
        float epsError = 1+get_param(searchParams,"eps",0.0f);

        std::vector<DistanceType> dists(dim_,0);
        DistanceType distsq = computeInitialDistances(vec, dists);
        searchLevel(result, vec, root_node_, distsq, dists, epsError);
    }

private:


    /*--------------------- Internal Data Structures --------------------------*/
    struct Node
    {
        /**
         * Indices of points in leaf node
         */
        int left, right;
        /**
         * Dimension used for subdivision.
         */
        int divfeat;
        /**
         * The values used for subdivision.
         */
        DistanceType divlow, divhigh;
        /**
         * The child nodes.
         */
        Node* child1, * child2;
    };
    typedef Node* NodePtr;


    struct Interval
    {
        DistanceType low, high;
    };

    typedef std::vector<Interval> BoundingBox;

    typedef BranchStruct<NodePtr, DistanceType> BranchSt;
    typedef BranchSt* Branch;




    void save_tree(FILE* stream, NodePtr tree)
    {
        save_value(stream, *tree);
        if (tree->child1!=NULL) {
            save_tree(stream, tree->child1);
        }
        if (tree->child2!=NULL) {
            save_tree(stream, tree->child2);
        }
    }


    void load_tree(FILE* stream, NodePtr& tree)
    {
        tree = pool_.allocate<Node>();
        load_value(stream, *tree);
        if (tree->child1!=NULL) {
            load_tree(stream, tree->child1);
        }
        if (tree->child2!=NULL) {
            load_tree(stream, tree->child2);
        }
    }


    void computeBoundingBox(BoundingBox& bbox)
    {
        bbox.resize(dim_);
        for (size_t i=0; i<dim_; ++i) {
            bbox[i].low = (DistanceType)dataset_[0][i];
            bbox[i].high = (DistanceType)dataset_[0][i];
        }
        for (size_t k=1; k<dataset_.rows; ++k) {
            for (size_t i=0; i<dim_; ++i) {
                if (dataset_[k][i]<bbox[i].low) bbox[i].low = (DistanceType)dataset_[k][i];
                if (dataset_[k][i]>bbox[i].high) bbox[i].high = (DistanceType)dataset_[k][i];
            }
        }
    }


    /**
     * Create a tree node that subdivides the list of vecs from vind[first]
     * to vind[last].  The routine is called recursively on each sublist.
     * Place a pointer to this new tree node in the location pTree.
     *
     * Params: pTree = the new node to create
     *                  first = index of the first vector
     *                  last = index of the last vector
     */
    NodePtr divideTree(int left, int right, BoundingBox& bbox)
    {
        NodePtr node = pool_.allocate<Node>(); // allocate memory

        /* If too few exemplars remain, then make this a leaf node. */
        if ( (right-left) <= leaf_max_size_) {
            node->child1 = node->child2 = NULL;    /* Mark as leaf node. */
            node->left = left;
            node->right = right;

            // compute bounding-box of leaf points
            for (size_t i=0; i<dim_; ++i) {
                bbox[i].low = (DistanceType)dataset_[vind_[left]][i];
                bbox[i].high = (DistanceType)dataset_[vind_[left]][i];
            }
            for (int k=left+1; k<right; ++k) {
                for (size_t i=0; i<dim_; ++i) {
                    if (bbox[i].low>dataset_[vind_[k]][i]) bbox[i].low=(DistanceType)dataset_[vind_[k]][i];
                    if (bbox[i].high<dataset_[vind_[k]][i]) bbox[i].high=(DistanceType)dataset_[vind_[k]][i];
                }
            }
        }
        else {
            int idx;
            int cutfeat;
            DistanceType cutval;
            middleSplit_(&vind_[0]+left, right-left, idx, cutfeat, cutval, bbox);

            node->divfeat = cutfeat;

            BoundingBox left_bbox(bbox);
            left_bbox[cutfeat].high = cutval;
            node->child1 = divideTree(left, left+idx, left_bbox);

            BoundingBox right_bbox(bbox);
            right_bbox[cutfeat].low = cutval;
            node->child2 = divideTree(left+idx, right, right_bbox);

            node->divlow = left_bbox[cutfeat].high;
            node->divhigh = right_bbox[cutfeat].low;

            for (size_t i=0; i<dim_; ++i) {
                bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low);
                bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high);
            }
        }

        return node;
    }

    void computeMinMax(int* ind, int count, int dim, ElementType& min_elem, ElementType& max_elem)
    {
        min_elem = dataset_[ind[0]][dim];
        max_elem = dataset_[ind[0]][dim];
        for (int i=1; i<count; ++i) {
            ElementType val = dataset_[ind[i]][dim];
            if (val<min_elem) min_elem = val;
            if (val>max_elem) max_elem = val;
        }
    }

    void middleSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
    {
        // find the largest span from the approximate bounding box
        ElementType max_span = bbox[0].high-bbox[0].low;
        cutfeat = 0;
        cutval = (bbox[0].high+bbox[0].low)/2;
        for (size_t i=1; i<dim_; ++i) {
            ElementType span = bbox[i].high-bbox[i].low;
            if (span>max_span) {
                max_span = span;
                cutfeat = i;
                cutval = (bbox[i].high+bbox[i].low)/2;
            }
        }

        // compute exact span on the found dimension
        ElementType min_elem, max_elem;
        computeMinMax(ind, count, cutfeat, min_elem, max_elem);
        cutval = (min_elem+max_elem)/2;
        max_span = max_elem - min_elem;

        // check if a dimension of a largest span exists
        size_t k = cutfeat;
        for (size_t i=0; i<dim_; ++i) {
            if (i==k) continue;
            ElementType span = bbox[i].high-bbox[i].low;
            if (span>max_span) {
                computeMinMax(ind, count, i, min_elem, max_elem);
                span = max_elem - min_elem;
                if (span>max_span) {
                    max_span = span;
                    cutfeat = i;
                    cutval = (min_elem+max_elem)/2;
                }
            }
        }
        int lim1, lim2;
        planeSplit(ind, count, cutfeat, cutval, lim1, lim2);

        if (lim1>count/2) index = lim1;
        else if (lim2<count/2) index = lim2;
        else index = count/2;
    }


    void middleSplit_(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
    {
        const float EPS=0.00001f;
        DistanceType max_span = bbox[0].high-bbox[0].low;
        for (size_t i=1; i<dim_; ++i) {
            DistanceType span = bbox[i].high-bbox[i].low;
            if (span>max_span) {
                max_span = span;
            }
        }
        DistanceType max_spread = -1;
        cutfeat = 0;
        for (size_t i=0; i<dim_; ++i) {
            DistanceType span = bbox[i].high-bbox[i].low;
            if (span>(DistanceType)((1-EPS)*max_span)) {
                ElementType min_elem, max_elem;
                computeMinMax(ind, count, cutfeat, min_elem, max_elem);
                DistanceType spread = (DistanceType)(max_elem-min_elem);
                if (spread>max_spread) {
                    cutfeat = (int)i;
                    max_spread = spread;
                }
            }
        }
        // split in the middle
        DistanceType split_val = (bbox[cutfeat].low+bbox[cutfeat].high)/2;
        ElementType min_elem, max_elem;
        computeMinMax(ind, count, cutfeat, min_elem, max_elem);

        if (split_val<min_elem) cutval = (DistanceType)min_elem;
        else if (split_val>max_elem) cutval = (DistanceType)max_elem;
        else cutval = split_val;

        int lim1, lim2;
        planeSplit(ind, count, cutfeat, cutval, lim1, lim2);

        if (lim1>count/2) index = lim1;
        else if (lim2<count/2) index = lim2;
        else index = count/2;
    }


    /**
     *  Subdivide the list of points by a plane perpendicular on axe corresponding
     *  to the 'cutfeat' dimension at 'cutval' position.
     *
     *  On return:
     *  dataset[ind[0..lim1-1]][cutfeat]<cutval
     *  dataset[ind[lim1..lim2-1]][cutfeat]==cutval
     *  dataset[ind[lim2..count]][cutfeat]>cutval
     */
    void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
    {
        /* Move vector indices for left subtree to front of list. */
        int left = 0;
        int right = count-1;
        for (;; ) {
            while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
            while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
            if (left>right) break;
            std::swap(ind[left], ind[right]); ++left; --right;
        }
        /* If either list is empty, it means that all remaining features
         * are identical. Split in the middle to maintain a balanced tree.
         */
        lim1 = left;
        right = count-1;
        for (;; ) {
            while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
            while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
            if (left>right) break;
            std::swap(ind[left], ind[right]); ++left; --right;
        }
        lim2 = left;
    }

    DistanceType computeInitialDistances(const ElementType* vec, std::vector<DistanceType>& dists)
    {
        DistanceType distsq = 0.0;

        for (size_t i = 0; i < dim_; ++i) {
            if (vec[i] < root_bbox_[i].low) {
                dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].low, (int)i);
                distsq += dists[i];
            }
            if (vec[i] > root_bbox_[i].high) {
                dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].high, (int)i);
                distsq += dists[i];
            }
        }

        return distsq;
    }

    /**
     * Performs an exact search in the tree starting from a node.
     */
    void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq,
                     std::vector<DistanceType>& dists, const float epsError)
    {
        /* If this is a leaf node, then do check and return. */
        if ((node->child1 == NULL)&&(node->child2 == NULL)) {
            DistanceType worst_dist = result_set.worstDist();
            for (int i=node->left; i<node->right; ++i) {
                int index = reorder_ ? i : vind_[i];
                DistanceType dist = distance_(vec, data_[index], dim_, worst_dist);
                if (dist<worst_dist) {
                    result_set.addPoint(dist,vind_[i]);
                }
            }
            return;
        }

        /* Which child branch should be taken first? */
        int idx = node->divfeat;
        ElementType val = vec[idx];
        DistanceType diff1 = val - node->divlow;
        DistanceType diff2 = val - node->divhigh;

        NodePtr bestChild;
        NodePtr otherChild;
        DistanceType cut_dist;
        if ((diff1+diff2)<0) {
            bestChild = node->child1;
            otherChild = node->child2;
            cut_dist = distance_.accum_dist(val, node->divhigh, idx);
        }
        else {
            bestChild = node->child2;
            otherChild = node->child1;
            cut_dist = distance_.accum_dist( val, node->divlow, idx);
        }

        /* Call recursively to search next level down. */
        searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError);

        DistanceType dst = dists[idx];
        mindistsq = mindistsq + cut_dist - dst;
        dists[idx] = cut_dist;
        if (mindistsq*epsError<=result_set.worstDist()) {
            searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError);
        }
        dists[idx] = dst;
    }

private:

    /**
     * The dataset used by this index
     */
    const Matrix<ElementType> dataset_;

    IndexParams index_params_;

    int leaf_max_size_;
    bool reorder_;


    /**
     *  Array of indices to vectors in the dataset.
     */
    std::vector<int> vind_;

    Matrix<ElementType> data_;

    size_t size_;
    size_t dim_;

    /**
     * Array of k-d trees used to find neighbours.
     */
    NodePtr root_node_;

    BoundingBox root_bbox_;

    /**
     * Pooled memory allocator.
     *
     * Using a pooled memory allocator is more efficient
     * than allocating memory directly when there is a large
     * number small of memory allocations.
     */
    PooledAllocator pool_;

    Distance distance_;
};   // class KDTree

}

#endif //OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Software Developer
Australia Australia
This member has not yet provided a Biography. Assume it's interesting and varied, and probably something to do with programming.

Comments and Discussions