Click here to Skip to main content
15,881,715 members
Articles / Programming Languages / C++

Capturing Video from Web-camera on Windows 7 and 8 by using Media Foundation

Rate me:
Please Sign up or sign in to vote.
4.96/5 (25 votes)
10 Apr 2013CPOL5 min read 280.1K   33.1K   71  
Simple lib for capturing video from web-camera by using Media Foundation
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/
#ifndef OPENCV_FLANN_AUTOTUNED_INDEX_H_
#define OPENCV_FLANN_AUTOTUNED_INDEX_H_

#include "general.h"
#include "nn_index.h"
#include "ground_truth.h"
#include "index_testing.h"
#include "sampling.h"
#include "kdtree_index.h"
#include "kdtree_single_index.h"
#include "kmeans_index.h"
#include "composite_index.h"
#include "linear_index.h"
#include "logger.h"

namespace cvflann
{

template<typename Distance>
NNIndex<Distance>* create_index_by_type(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance);


struct AutotunedIndexParams : public IndexParams
{
    AutotunedIndexParams(float target_precision = 0.8, float build_weight = 0.01, float memory_weight = 0, float sample_fraction = 0.1)
    {
        (*this)["algorithm"] = FLANN_INDEX_AUTOTUNED;
        // precision desired (used for autotuning, -1 otherwise)
        (*this)["target_precision"] = target_precision;
        // build tree time weighting factor
        (*this)["build_weight"] = build_weight;
        // index memory weighting factor
        (*this)["memory_weight"] = memory_weight;
        // what fraction of the dataset to use for autotuning
        (*this)["sample_fraction"] = sample_fraction;
    }
};


template <typename Distance>
class AutotunedIndex : public NNIndex<Distance>
{
public:
    typedef typename Distance::ElementType ElementType;
    typedef typename Distance::ResultType DistanceType;

    AutotunedIndex(const Matrix<ElementType>& inputData, const IndexParams& params = AutotunedIndexParams(), Distance d = Distance()) :
        dataset_(inputData), distance_(d)
    {
        target_precision_ = get_param(params, "target_precision",0.8f);
        build_weight_ =  get_param(params,"build_weight", 0.01f);
        memory_weight_ = get_param(params, "memory_weight", 0.0f);
        sample_fraction_ = get_param(params,"sample_fraction", 0.1f);
        bestIndex_ = NULL;
    }

    AutotunedIndex(const AutotunedIndex&);
    AutotunedIndex& operator=(const AutotunedIndex&);

    virtual ~AutotunedIndex()
    {
        if (bestIndex_ != NULL) {
            delete bestIndex_;
            bestIndex_ = NULL;
        }
    }

    /**
     *          Method responsible with building the index.
     */
    virtual void buildIndex()
    {
        bestParams_ = estimateBuildParams();
        Logger::info("----------------------------------------------------\n");
        Logger::info("Autotuned parameters:\n");
        print_params(bestParams_);
        Logger::info("----------------------------------------------------\n");

        bestIndex_ = create_index_by_type(dataset_, bestParams_, distance_);
        bestIndex_->buildIndex();
        speedup_ = estimateSearchParams(bestSearchParams_);
        Logger::info("----------------------------------------------------\n");
        Logger::info("Search parameters:\n");
        print_params(bestSearchParams_);
        Logger::info("----------------------------------------------------\n");
    }

    /**
     *  Saves the index to a stream
     */
    virtual void saveIndex(FILE* stream)
    {
        save_value(stream, (int)bestIndex_->getType());
        bestIndex_->saveIndex(stream);
        save_value(stream, get_param<int>(bestSearchParams_, "checks"));
    }

    /**
     *  Loads the index from a stream
     */
    virtual void loadIndex(FILE* stream)
    {
        int index_type;

        load_value(stream, index_type);
        IndexParams params;
        params["algorithm"] = (flann_algorithm_t)index_type;
        bestIndex_ = create_index_by_type<Distance>(dataset_, params, distance_);
        bestIndex_->loadIndex(stream);
        int checks;
        load_value(stream, checks);
        bestSearchParams_["checks"] = checks;
    }

    /**
     *      Method that searches for nearest-neighbors
     */
    virtual void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
    {
        int checks = get_param<int>(searchParams,"checks",FLANN_CHECKS_AUTOTUNED);
        if (checks == FLANN_CHECKS_AUTOTUNED) {
            bestIndex_->findNeighbors(result, vec, bestSearchParams_);
        }
        else {
            bestIndex_->findNeighbors(result, vec, searchParams);
        }
    }


    IndexParams getParameters() const
    {
        return bestIndex_->getParameters();
    }

    SearchParams getSearchParameters() const
    {
        return bestSearchParams_;
    }

    float getSpeedup() const
    {
        return speedup_;
    }


    /**
     *      Number of features in this index.
     */
    virtual size_t size() const
    {
        return bestIndex_->size();
    }

    /**
     *  The length of each vector in this index.
     */
    virtual size_t veclen() const
    {
        return bestIndex_->veclen();
    }

    /**
     * The amount of memory (in bytes) this index uses.
     */
    virtual int usedMemory() const
    {
        return bestIndex_->usedMemory();
    }

    /**
     * Algorithm name
     */
    virtual flann_algorithm_t getType() const
    {
        return FLANN_INDEX_AUTOTUNED;
    }

private:

    struct CostData
    {
        float searchTimeCost;
        float buildTimeCost;
        float memoryCost;
        float totalCost;
        IndexParams params;
    };

    void evaluate_kmeans(CostData& cost)
    {
        StartStopTimer t;
        int checks;
        const int nn = 1;

        Logger::info("KMeansTree using params: max_iterations=%d, branching=%d\n",
                     get_param<int>(cost.params,"iterations"),
                     get_param<int>(cost.params,"branching"));
        KMeansIndex<Distance> kmeans(sampledDataset_, cost.params, distance_);
        // measure index build time
        t.start();
        kmeans.buildIndex();
        t.stop();
        float buildTime = (float)t.value;

        // measure search time
        float searchTime = test_index_precision(kmeans, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn);

        float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float));
        cost.memoryCost = (kmeans.usedMemory() + datasetMemory) / datasetMemory;
        cost.searchTimeCost = searchTime;
        cost.buildTimeCost = buildTime;
        Logger::info("KMeansTree buildTime=%g, searchTime=%g, build_weight=%g\n", buildTime, searchTime, build_weight_);
    }


    void evaluate_kdtree(CostData& cost)
    {
        StartStopTimer t;
        int checks;
        const int nn = 1;

        Logger::info("KDTree using params: trees=%d\n", get_param<int>(cost.params,"trees"));
        KDTreeIndex<Distance> kdtree(sampledDataset_, cost.params, distance_);

        t.start();
        kdtree.buildIndex();
        t.stop();
        float buildTime = (float)t.value;

        //measure search time
        float searchTime = test_index_precision(kdtree, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn);

        float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float));
        cost.memoryCost = (kdtree.usedMemory() + datasetMemory) / datasetMemory;
        cost.searchTimeCost = searchTime;
        cost.buildTimeCost = buildTime;
        Logger::info("KDTree buildTime=%g, searchTime=%g\n", buildTime, searchTime);
    }


    //    struct KMeansSimpleDownhillFunctor {
    //
    //        Autotune& autotuner;
    //        KMeansSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {};
    //
    //        float operator()(int* params) {
    //
    //            float maxFloat = numeric_limits<float>::max();
    //
    //            if (params[0]<2) return maxFloat;
    //            if (params[1]<0) return maxFloat;
    //
    //            CostData c;
    //            c.params["algorithm"] = KMEANS;
    //            c.params["centers-init"] = CENTERS_RANDOM;
    //            c.params["branching"] = params[0];
    //            c.params["max-iterations"] = params[1];
    //
    //            autotuner.evaluate_kmeans(c);
    //
    //            return c.timeCost;
    //
    //        }
    //    };
    //
    //    struct KDTreeSimpleDownhillFunctor {
    //
    //        Autotune& autotuner;
    //        KDTreeSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {};
    //
    //        float operator()(int* params) {
    //            float maxFloat = numeric_limits<float>::max();
    //
    //            if (params[0]<1) return maxFloat;
    //
    //            CostData c;
    //            c.params["algorithm"] = KDTREE;
    //            c.params["trees"] = params[0];
    //
    //            autotuner.evaluate_kdtree(c);
    //
    //            return c.timeCost;
    //
    //        }
    //    };



    void optimizeKMeans(std::vector<CostData>& costs)
    {
        Logger::info("KMEANS, Step 1: Exploring parameter space\n");

        // explore kmeans parameters space using combinations of the parameters below
        int maxIterations[] = { 1, 5, 10, 15 };
        int branchingFactors[] = { 16, 32, 64, 128, 256 };

        int kmeansParamSpaceSize = FLANN_ARRAY_LEN(maxIterations) * FLANN_ARRAY_LEN(branchingFactors);
        costs.reserve(costs.size() + kmeansParamSpaceSize);

        // evaluate kmeans for all parameter combinations
        for (size_t i = 0; i < FLANN_ARRAY_LEN(maxIterations); ++i) {
            for (size_t j = 0; j < FLANN_ARRAY_LEN(branchingFactors); ++j) {
                CostData cost;
                cost.params["algorithm"] = FLANN_INDEX_KMEANS;
                cost.params["centers_init"] = FLANN_CENTERS_RANDOM;
                cost.params["iterations"] = maxIterations[i];
                cost.params["branching"] = branchingFactors[j];

                evaluate_kmeans(cost);
                costs.push_back(cost);
            }
        }

        //         Logger::info("KMEANS, Step 2: simplex-downhill optimization\n");
        //
        //         const int n = 2;
        //         // choose initial simplex points as the best parameters so far
        //         int kmeansNMPoints[n*(n+1)];
        //         float kmeansVals[n+1];
        //         for (int i=0;i<n+1;++i) {
        //             kmeansNMPoints[i*n] = (int)kmeansCosts[i].params["branching"];
        //             kmeansNMPoints[i*n+1] = (int)kmeansCosts[i].params["max-iterations"];
        //             kmeansVals[i] = kmeansCosts[i].timeCost;
        //         }
        //         KMeansSimpleDownhillFunctor kmeans_cost_func(*this);
        //         // run optimization
        //         optimizeSimplexDownhill(kmeansNMPoints,n,kmeans_cost_func,kmeansVals);
        //         // store results
        //         for (int i=0;i<n+1;++i) {
        //             kmeansCosts[i].params["branching"] = kmeansNMPoints[i*2];
        //             kmeansCosts[i].params["max-iterations"] = kmeansNMPoints[i*2+1];
        //             kmeansCosts[i].timeCost = kmeansVals[i];
        //         }
    }


    void optimizeKDTree(std::vector<CostData>& costs)
    {
        Logger::info("KD-TREE, Step 1: Exploring parameter space\n");

        // explore kd-tree parameters space using the parameters below
        int testTrees[] = { 1, 4, 8, 16, 32 };

        // evaluate kdtree for all parameter combinations
        for (size_t i = 0; i < FLANN_ARRAY_LEN(testTrees); ++i) {
            CostData cost;
            cost.params["trees"] = testTrees[i];

            evaluate_kdtree(cost);
            costs.push_back(cost);
        }

        //         Logger::info("KD-TREE, Step 2: simplex-downhill optimization\n");
        //
        //         const int n = 1;
        //         // choose initial simplex points as the best parameters so far
        //         int kdtreeNMPoints[n*(n+1)];
        //         float kdtreeVals[n+1];
        //         for (int i=0;i<n+1;++i) {
        //             kdtreeNMPoints[i] = (int)kdtreeCosts[i].params["trees"];
        //             kdtreeVals[i] = kdtreeCosts[i].timeCost;
        //         }
        //         KDTreeSimpleDownhillFunctor kdtree_cost_func(*this);
        //         // run optimization
        //         optimizeSimplexDownhill(kdtreeNMPoints,n,kdtree_cost_func,kdtreeVals);
        //         // store results
        //         for (int i=0;i<n+1;++i) {
        //             kdtreeCosts[i].params["trees"] = kdtreeNMPoints[i];
        //             kdtreeCosts[i].timeCost = kdtreeVals[i];
        //         }
    }

    /**
     *  Chooses the best nearest-neighbor algorithm and estimates the optimal
     *  parameters to use when building the index (for a given precision).
     *  Returns a dictionary with the optimal parameters.
     */
    IndexParams estimateBuildParams()
    {
        std::vector<CostData> costs;

        int sampleSize = int(sample_fraction_ * dataset_.rows);
        int testSampleSize = std::min(sampleSize / 10, 1000);

        Logger::info("Entering autotuning, dataset size: %d, sampleSize: %d, testSampleSize: %d, target precision: %g\n", dataset_.rows, sampleSize, testSampleSize, target_precision_);

        // For a very small dataset, it makes no sense to build any fancy index, just
        // use linear search
        if (testSampleSize < 10) {
            Logger::info("Choosing linear, dataset too small\n");
            return LinearIndexParams();
        }

        // We use a fraction of the original dataset to speedup the autotune algorithm
        sampledDataset_ = random_sample(dataset_, sampleSize);
        // We use a cross-validation approach, first we sample a testset from the dataset
        testDataset_ = random_sample(sampledDataset_, testSampleSize, true);

        // We compute the ground truth using linear search
        Logger::info("Computing ground truth... \n");
        gt_matches_ = Matrix<int>(new int[testDataset_.rows], testDataset_.rows, 1);
        StartStopTimer t;
        t.start();
        compute_ground_truth<Distance>(sampledDataset_, testDataset_, gt_matches_, 0, distance_);
        t.stop();

        CostData linear_cost;
        linear_cost.searchTimeCost = (float)t.value;
        linear_cost.buildTimeCost = 0;
        linear_cost.memoryCost = 0;
        linear_cost.params["algorithm"] = FLANN_INDEX_LINEAR;

        costs.push_back(linear_cost);

        // Start parameter autotune process
        Logger::info("Autotuning parameters...\n");

        optimizeKMeans(costs);
        optimizeKDTree(costs);

        float bestTimeCost = costs[0].searchTimeCost;
        for (size_t i = 0; i < costs.size(); ++i) {
            float timeCost = costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost;
            if (timeCost < bestTimeCost) {
                bestTimeCost = timeCost;
            }
        }

        float bestCost = costs[0].searchTimeCost / bestTimeCost;
        IndexParams bestParams = costs[0].params;
        if (bestTimeCost > 0) {
            for (size_t i = 0; i < costs.size(); ++i) {
                float crtCost = (costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost) / bestTimeCost +
                                memory_weight_ * costs[i].memoryCost;
                if (crtCost < bestCost) {
                    bestCost = crtCost;
                    bestParams = costs[i].params;
                }
            }
        }

        delete[] gt_matches_.data;
        delete[] testDataset_.data;
        delete[] sampledDataset_.data;

        return bestParams;
    }



    /**
     *  Estimates the search time parameters needed to get the desired precision.
     *  Precondition: the index is built
     *  Postcondition: the searchParams will have the optimum params set, also the speedup obtained over linear search.
     */
    float estimateSearchParams(SearchParams& searchParams)
    {
        const int nn = 1;
        const size_t SAMPLE_COUNT = 1000;

        assert(bestIndex_ != NULL); // must have a valid index

        float speedup = 0;

        int samples = (int)std::min(dataset_.rows / 10, SAMPLE_COUNT);
        if (samples > 0) {
            Matrix<ElementType> testDataset = random_sample(dataset_, samples);

            Logger::info("Computing ground truth\n");

            // we need to compute the ground truth first
            Matrix<int> gt_matches(new int[testDataset.rows], testDataset.rows, 1);
            StartStopTimer t;
            t.start();
            compute_ground_truth<Distance>(dataset_, testDataset, gt_matches, 1, distance_);
            t.stop();
            float linear = (float)t.value;

            int checks;
            Logger::info("Estimating number of checks\n");

            float searchTime;
            float cb_index;
            if (bestIndex_->getType() == FLANN_INDEX_KMEANS) {
                Logger::info("KMeans algorithm, estimating cluster border factor\n");
                KMeansIndex<Distance>* kmeans = (KMeansIndex<Distance>*)bestIndex_;
                float bestSearchTime = -1;
                float best_cb_index = -1;
                int best_checks = -1;
                for (cb_index = 0; cb_index < 1.1f; cb_index += 0.2f) {
                    kmeans->set_cb_index(cb_index);
                    searchTime = test_index_precision(*kmeans, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1);
                    if ((searchTime < bestSearchTime) || (bestSearchTime == -1)) {
                        bestSearchTime = searchTime;
                        best_cb_index = cb_index;
                        best_checks = checks;
                    }
                }
                searchTime = bestSearchTime;
                cb_index = best_cb_index;
                checks = best_checks;

                kmeans->set_cb_index(best_cb_index);
                Logger::info("Optimum cb_index: %g\n", cb_index);
                bestParams_["cb_index"] = cb_index;
            }
            else {
                searchTime = test_index_precision(*bestIndex_, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1);
            }

            Logger::info("Required number of checks: %d \n", checks);
            searchParams["checks"] = checks;

            speedup = linear / searchTime;

            delete[] gt_matches.data;
            delete[] testDataset.data;
        }

        return speedup;
    }

private:
    NNIndex<Distance>* bestIndex_;

    IndexParams bestParams_;
    SearchParams bestSearchParams_;

    Matrix<ElementType> sampledDataset_;
    Matrix<ElementType> testDataset_;
    Matrix<int> gt_matches_;

    float speedup_;

    /**
     * The dataset used by this index
     */
    const Matrix<ElementType> dataset_;

    /**
     * Index parameters
     */
    float target_precision_;
    float build_weight_;
    float memory_weight_;
    float sample_fraction_;

    Distance distance_;


};
}

#endif /* OPENCV_FLANN_AUTOTUNED_INDEX_H_ */

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Software Developer
Australia Australia
This member has not yet provided a Biography. Assume it's interesting and varied, and probably something to do with programming.

Comments and Discussions