Click here to Skip to main content
15,886,035 members
Articles / Programming Languages / C++

Detect Driver

,
Rate me:
Please Sign up or sign in to vote.
5.00/5 (46 votes)
10 Mar 2010CPOL12 min read 110.1K   9.1K   155  
This article is the continue of the previously posted article Hide Driver. Some methods to detect hidden files and processes are described in it
/*
 *
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Copyright (c) 1996,1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Copyright (c) 1997
 * Moscow Center for SPARC Technology
 *
 * Copyright (c) 1999 
 * Boris Fomitchev
 *
 * This material is provided "as is", with absolutely no warranty expressed
 * or implied. Any use is at your own risk.
 *
 * Permission to use or copy this software for any purpose is hereby granted 
 * without fee, provided the above notices are retained on all copies.
 * Permission to modify the code and to distribute modified code is granted,
 * provided the above notices are retained, and a notice that the code was
 * modified is included with the above copyright notice.
 *
 */
#ifndef _STLP_HASHTABLE_C
#define _STLP_HASHTABLE_C

#ifndef _STLP_INTERNAL_HASHTABLE_H
# include <stl/_hashtable.h>
#endif

#ifdef _STLP_DEBUG
#  define hashtable __WORKAROUND_DBG_RENAME(hashtable)
#endif

_STLP_BEGIN_NAMESPACE

# define __PRIME_LIST_BODY { \
  53ul,         97ul,         193ul,       389ul,       769ul,      \
  1543ul,       3079ul,       6151ul,      12289ul,     24593ul,    \
  49157ul,      98317ul,      196613ul,    393241ul,    786433ul,   \
  1572869ul,    3145739ul,    6291469ul,   12582917ul,  25165843ul, \
  50331653ul,   100663319ul,  201326611ul, 402653189ul, 805306457ul,\
  1610612741ul, 3221225473ul, 4294967291ul  \
}

#if ( _STLP_STATIC_TEMPLATE_DATA > 0 )
template <class _Tp>
const size_t _Stl_prime<_Tp>::_M_list[__stl_num_primes] = __PRIME_LIST_BODY;
#else
__DECLARE_INSTANCE(const size_t, 
           _Stl_prime_type::_M_list[], =__PRIME_LIST_BODY);
#endif /* _STLP_STATIC_TEMPLATE_DATA */

# undef __PRIME_LIST_BODY

// fbp: these defines are for outline methods definitions.
// needed to definitions to be portable. Should not be used in method bodies.

# if defined ( _STLP_NESTED_TYPE_PARAM_BUG )
#  define __size_type__       size_t
#  define size_type           size_t
#  define value_type      _Val
#  define key_type        _Key
#  define _Node           _Hashtable_node<_Val>
#  define __reference__       _Val&

#  define __iterator__        _Ht_iterator<_Val, _Nonconst_traits<_Val>, _Key, _HF, _ExK, _EqK, _All>
#  define __const_iterator__  _Ht_iterator<_Val, _Const_traits<_Val>, _Key, _HF, _ExK, _EqK, _All>
# else
#  define __size_type__        _STLP_TYPENAME_ON_RETURN_TYPE hashtable<_Val, _Key, _HF, _ExK, _EqK, _All>::size_type
#  define __reference__        _STLP_TYPENAME_ON_RETURN_TYPE  hashtable<_Val, _Key, _HF, _ExK, _EqK, _All>::reference
#  define __iterator__         _STLP_TYPENAME_ON_RETURN_TYPE hashtable<_Val, _Key, _HF, _ExK, _EqK, _All>::iterator
# endif

template <class _Val, class _Key, class _HF, class _ExK, class _EqK, 
          class _All>
_Hashtable_node<_Val>*
_Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::_M_skip_to_next() {
  size_t __bucket = _M_ht->_M_bkt_num(_M_cur->_M_val);
  size_t __h_sz;
  __h_sz = this->_M_ht->bucket_count();

  _Node* __i=0;
  while (__i==0 && ++__bucket < __h_sz)
    __i = (_Node*)_M_ht->_M_buckets[__bucket];
  return __i;
}

template <class _Val, class _Key, class _HF, class _ExK, class _EqK, 
          class _All>
__size_type__
hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>::_M_next_size(size_type __n) const    { 
  const size_type* __first = (const size_type*)_Stl_prime_type::_M_list;
  const size_type* __last =  (const size_type*)_Stl_prime_type::_M_list + (int)__stl_num_primes;
  const size_type* pos = __lower_bound(__first, __last, __n, __less((size_type*)0), (ptrdiff_t*)0);
  return (pos == __last ? *(__last - 1) : *pos);
}

template <class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All>
bool 
hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>::_M_equal(
                          const hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>& __ht1,
                          const hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>& __ht2)
{
  //  typedef _Hashtable_node<_Val> _Node;
  if (__ht1.bucket_count() != __ht2.bucket_count())
    return false;
  for (size_t __n = 0; __n < __ht1.bucket_count(); ++__n) {
    const _Node* __cur1 = __ht1._M_get_bucket(__n);
    const _Node* __cur2 = __ht2._M_get_bucket(__n);
    for ( ; __cur1 && __cur2 && __cur1->_M_val == __cur2->_M_val;
          __cur1 = __cur1->_M_next, __cur2 = __cur2->_M_next)
      {}
    if (__cur1 || __cur2)
      return false;
  }
  return true;
}  

template <class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All>
pair< _Ht_iterator<_Val, _Nonconst_traits<_Val>, _Key, _HF, _ExK, _EqK, _All> , bool> 
hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>
  ::insert_unique_noresize(const value_type& __obj)
{
  const size_type __n = _M_bkt_num(__obj);
  _Node* __first = (_Node*)_M_buckets[__n];

  for (_Node* __cur = __first; __cur; __cur = __cur->_M_next) 
    if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj)))
      return pair<iterator, bool>(iterator(__cur, this), false);

  _Node* __tmp = _M_new_node(__obj);
  __tmp->_M_next = __first;
  _M_buckets[__n] = __tmp;
  ++_M_num_elements._M_data;
  return pair<iterator, bool>(iterator(__tmp, this), true);
}

template <class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All>
__iterator__ 
hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>
  ::insert_equal_noresize(const value_type& __obj)
{
  const size_type __n = _M_bkt_num(__obj);
  _Node* __first = (_Node*)_M_buckets[__n];

  for (_Node* __cur = __first; __cur; __cur = __cur->_M_next) 
    if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) {
      _Node* __tmp = _M_new_node(__obj);
      __tmp->_M_next = __cur->_M_next;
      __cur->_M_next = __tmp;
      ++_M_num_elements._M_data;
      return iterator(__tmp, this);
    }

  _Node* __tmp = _M_new_node(__obj);
  __tmp->_M_next = __first;
  _M_buckets[__n] = __tmp;
  ++_M_num_elements._M_data;
  return iterator(__tmp, this);
}

template <class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All>
__reference__ 
hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>::_M_insert(const value_type& __obj)
{
  resize(_M_num_elements._M_data + 1);

  size_type __n = _M_bkt_num(__obj);
  _Node* __first = (_Node*)_M_buckets[__n];

  _Node* __tmp = _M_new_node(__obj);
  __tmp->_M_next = __first;
  _M_buckets[__n] = __tmp;
  ++_M_num_elements._M_data;
  return __tmp->_M_val;
}

template <class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All>
__reference__ 
hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>::find_or_insert(const value_type& __obj)
{

  _Node* __first = _M_find(_M_get_key(__obj));
  if (__first)
    return __first->_M_val;
  else
    return _M_insert(__obj);
}

template <class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All>
pair< _Ht_iterator<_Val, _Nonconst_traits<_Val>, _Key, _HF, _ExK, _EqK, _All>,
      _Ht_iterator<_Val, _Nonconst_traits<_Val>, _Key, _HF, _ExK, _EqK, _All> > 
hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>::equal_range(const key_type& __key)
{
  typedef pair<iterator, iterator> _Pii;
  const size_type __n = _M_bkt_num_key(__key);

  for (_Node* __first = (_Node*)_M_buckets[__n]; __first; __first = __first->_M_next)
    if (_M_equals(_M_get_key(__first->_M_val), __key)) {
      for (_Node* __cur = __first->_M_next; __cur; __cur = __cur->_M_next)
        if (!_M_equals(_M_get_key(__cur->_M_val), __key))
          return _Pii(iterator(__first, this), iterator(__cur, this));
      for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m)
        if (_M_buckets[__m])
          return _Pii(iterator(__first, this),
                     iterator((_Node*)_M_buckets[__m], this));
      return _Pii(iterator(__first, this), end());
    }
  return _Pii(end(), end());
}

template <class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All>
pair< _Ht_iterator<_Val, _Const_traits<_Val>, _Key, _HF, _ExK, _EqK, _All>, 
     _Ht_iterator<_Val, _Const_traits<_Val>, _Key, _HF, _ExK, _EqK, _All> > 
hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>
  ::equal_range(const key_type& __key) const
{
  typedef pair<const_iterator, const_iterator> _Pii;
  const size_type __n = _M_bkt_num_key(__key);

  for (const _Node* __first = (_Node*)_M_buckets[__n] ;
       __first; 
       __first = __first->_M_next) {
    if (_M_equals(_M_get_key(__first->_M_val), __key)) {
      for (const _Node* __cur = __first->_M_next;
           __cur;
           __cur = __cur->_M_next)
        if (!_M_equals(_M_get_key(__cur->_M_val), __key))
          return _Pii(const_iterator(__first, this),
                      const_iterator(__cur, this));
      for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m)
        if (_M_buckets[__m])
          return _Pii(const_iterator(__first, this),
                      const_iterator((_Node*)_M_buckets[__m], this));
      return _Pii(const_iterator(__first, this), end());
    }
  }
  return _Pii(end(), end());
}

template <class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All>
__size_type__ 
hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>::erase(const key_type& __key)
{
  const size_type __n = _M_bkt_num_key(__key);
  _Node* __first = (_Node*)_M_buckets[__n];
  size_type __erased = 0;

  if (__first) {
    _Node* __cur = __first;
    _Node* __next = __cur->_M_next;
    while (__next) {
      if (_M_equals(_M_get_key(__next->_M_val), __key)) {
        __cur->_M_next = __next->_M_next;
        _M_delete_node(__next);
        __next = __cur->_M_next;
        ++__erased;
        --_M_num_elements._M_data;
      }
      else {
        __cur = __next;
        __next = __cur->_M_next;
      }
    }
    if (_M_equals(_M_get_key(__first->_M_val), __key)) {
      _M_buckets[__n] = __first->_M_next;
      _M_delete_node(__first);
      ++__erased;
      --_M_num_elements._M_data;
    }
  }
  return __erased;
}

template <class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All>
void hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>::erase(const const_iterator& __it)
{
  // const iterator& __it = __REINTERPRET_CAST(const iterator&,_c_it);
  const _Node* __p = __it._M_cur;
  if (__p) {
    const size_type __n = _M_bkt_num(__p->_M_val);
    _Node* __cur = (_Node*)_M_buckets[__n];

    if (__cur == __p) {
      _M_buckets[__n] = __cur->_M_next;
      _M_delete_node(__cur);
      --_M_num_elements._M_data;
    }
    else {
      _Node* __next = __cur->_M_next;
      while (__next) {
        if (__next == __p) {
          __cur->_M_next = __next->_M_next;
          _M_delete_node(__next);
          --_M_num_elements._M_data;
          break;
        }
        else {
          __cur = __next;
          __next = __cur->_M_next;
        }
      }
    }
  }
}

template <class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All>
void hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>
  ::erase(const_iterator _c_first, const_iterator _c_last)
{
  iterator& __first = (iterator&)_c_first;
  iterator& __last = (iterator&)_c_last;
  size_type __f_bucket = __first._M_cur ? 
    _M_bkt_num(__first._M_cur->_M_val) : _M_buckets.size();
  size_type __l_bucket = __last._M_cur ? 
    _M_bkt_num(__last._M_cur->_M_val) : _M_buckets.size();
  if (__first._M_cur == __last._M_cur)
    return;
  else if (__f_bucket == __l_bucket)
    _M_erase_bucket(__f_bucket, __first._M_cur, __last._M_cur);
  else {
    _M_erase_bucket(__f_bucket, __first._M_cur, 0);
    for (size_type __n = __f_bucket + 1; __n < __l_bucket; ++__n)
      _M_erase_bucket(__n, 0);
    if (__l_bucket != _M_buckets.size())
      _M_erase_bucket(__l_bucket, __last._M_cur);
  }
}

template <class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All>
void hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>
  ::resize(size_type __num_elements_hint)
{
  const size_type __old_n = _M_buckets.size();
  if (__num_elements_hint > __old_n) {
    const size_type __n = _M_next_size(__num_elements_hint);
    if (__n > __old_n) {
      _BucketVector __tmp(__n, (void*)(0),
              _M_buckets.get_allocator());
      _STLP_TRY {
        for (size_type __bucket = 0; __bucket < __old_n; ++__bucket) {
          _Node* __first = (_Node*)_M_buckets[__bucket];
          while (__first) {
            size_type __new_bucket = _M_bkt_num(__first->_M_val, __n);
            _M_buckets[__bucket] = __first->_M_next;
            __first->_M_next = (_Node*)__tmp[__new_bucket];
            __tmp[__new_bucket] = __first;
            __first = (_Node*)_M_buckets[__bucket];          
          }
        }
        _M_buckets.swap(__tmp);
      }
#         ifdef _STLP_USE_EXCEPTIONS
      catch(...) {
        for (size_type __bucket = 0; __bucket < __tmp.size(); ++__bucket) {
          while (__tmp[__bucket]) {
            _Node* __next = ((_Node*)__tmp[__bucket])->_M_next;
            _M_delete_node((_Node*)__tmp[__bucket]);
            __tmp[__bucket] = __next;
          }
        }
        throw;
      }
#         endif /* _STLP_USE_EXCEPTIONS */
    }
  }
}

template <class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All>
void hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>
  ::_M_erase_bucket(const size_type __n, _Node* __first, _Node* __last)
{
  _Node* __cur = (_Node*)_M_buckets[__n];
  if (__cur == __first)
    _M_erase_bucket(__n, __last);
  else {
    _Node* __next;
    for (__next = __cur->_M_next; 
         __next != __first; 
         __cur = __next, __next = __cur->_M_next)
      ;
    while (__next != __last) {
      __cur->_M_next = __next->_M_next;
      _M_delete_node(__next);
      __next = __cur->_M_next;
      --_M_num_elements._M_data;
    }
  }
}

template <class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All>
void hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>
  ::_M_erase_bucket(const size_type __n, _Node* __last)
{
  _Node* __cur = (_Node*)_M_buckets[__n];
  while (__cur && __cur != __last) {
    _Node* __next = __cur->_M_next;
    _M_delete_node(__cur);
    __cur = __next;
    _M_buckets[__n] = __cur;
    --_M_num_elements._M_data;
  }
}

template <class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All>
void hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>::clear()
{
  for (size_type __i = 0; __i < _M_buckets.size(); ++__i) {
    _Node* __cur = (_Node*)_M_buckets[__i];
    while (__cur != 0) {
      _Node* __next = __cur->_M_next;
      _M_delete_node(__cur);
      __cur = __next;
    }
    _M_buckets[__i] = 0;
  }
  _M_num_elements._M_data = 0;
}

    
template <class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All>
void hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>
  ::_M_copy_from(const hashtable<_Val,_Key,_HF,_ExK,_EqK,_All>& __ht)
{
  _M_buckets.clear();
  _M_buckets.reserve(__ht._M_buckets.size());
  _M_buckets.insert(_M_buckets.end(), __ht._M_buckets.size(), (void*) 0);
  _STLP_TRY {
    for (size_type __i = 0; __i < __ht._M_buckets.size(); ++__i) {
      const _Node* __cur = (_Node*)__ht._M_buckets[__i];
      if (__cur) {
        _Node* __xcopy = _M_new_node(__cur->_M_val);
        _M_buckets[__i] = __xcopy;

        for (_Node* __next = __cur->_M_next; 
             __next; 
             __cur = __next, __next = __cur->_M_next) {
          __xcopy->_M_next = _M_new_node(__next->_M_val);
          __xcopy = __xcopy->_M_next;
        }
      }
    }
    _M_num_elements._M_data = __ht._M_num_elements._M_data;
  }
  _STLP_UNWIND(clear());
}

# undef __iterator__ 
# undef const_iterator
# undef __size_type__
# undef __reference__
# undef size_type       
# undef value_type      
# undef key_type        
# undef _Node            
# undef __stl_num_primes
# undef hashtable

_STLP_END_NAMESPACE

#endif /*  _STLP_HASHTABLE_C */

// Local Variables:
// mode:C++
// End:

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Chief Technology Officer Apriorit Inc.
United States United States
ApriorIT is a software research and development company specializing in cybersecurity and data management technology engineering. We work for a broad range of clients from Fortune 500 technology leaders to small innovative startups building unique solutions.

As Apriorit offers integrated research&development services for the software projects in such areas as endpoint security, network security, data security, embedded Systems, and virtualization, we have strong kernel and driver development skills, huge system programming expertise, and are reals fans of research projects.

Our specialty is reverse engineering, we apply it for security testing and security-related projects.

A separate department of Apriorit works on large-scale business SaaS solutions, handling tasks from business analysis, data architecture design, and web development to performance optimization and DevOps.

Official site: https://www.apriorit.com
Clutch profile: https://clutch.co/profile/apriorit
This is a Organisation

33 members

Written By
Software Developer Codedgers Inc
Ukraine Ukraine
This member has not yet provided a Biography. Assume it's interesting and varied, and probably something to do with programming.

Comments and Discussions