Click here to Skip to main content
15,892,005 members
Articles / Programming Languages / C++

Detect Driver

,
Rate me:
Please Sign up or sign in to vote.
5.00/5 (46 votes)
10 Mar 2010CPOL12 min read 110.4K   9.1K   155  
This article is the continue of the previously posted article Hide Driver. Some methods to detect hidden files and processes are described in it
/*
 *
 * Copyright (c) 1996,1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Copyright (c) 1997
 * Moscow Center for SPARC Technology
 *
 * Copyright (c) 1999 
 * Boris Fomitchev
 *
 * This material is provided "as is", with absolutely no warranty expressed
 * or implied. Any use is at your own risk.
 *
 * Permission to use or copy this software for any purpose is hereby granted 
 * without fee, provided the above notices are retained on all copies.
 * Permission to modify the code and to distribute modified code is granted,
 * provided the above notices are retained, and a notice that the code was
 * modified is included with the above copyright notice.
 *
 */

/* NOTE: This is an internal header file, included by other STL headers.
 *   You should not attempt to use it directly.
 */

#ifndef _STLP_INTERNAL_SLIST_H
#define _STLP_INTERNAL_SLIST_H


# ifndef _STLP_INTERNAL_ALGOBASE_H
#  include <stl/_algobase.h>
# endif

# ifndef _STLP_INTERNAL_ALLOC_H
#  include <stl/_alloc.h>
# endif

# ifndef _STLP_INTERNAL_ITERATOR_H
#  include <stl/_iterator.h>
# endif

# ifndef _STLP_INTERNAL_CONSTRUCT_H
#  include <stl/_construct.h>
# endif

# ifndef _STLP_INTERNAL_SLIST_BASE_H
#  include <stl/_slist_base.h>
# endif

# undef slist
# define  slist  __WORKAROUND_DBG_RENAME(slist)

_STLP_BEGIN_NAMESPACE 

template <class _Tp>
struct _Slist_node : public _Slist_node_base
{
  _Tp _M_data;
  __TRIVIAL_STUFF(_Slist_node)
};

struct _Slist_iterator_base {

  typedef size_t               size_type;
  typedef ptrdiff_t            difference_type;
  typedef forward_iterator_tag iterator_category;

  _Slist_node_base* _M_node;

  _Slist_iterator_base(_Slist_node_base* __x) : _M_node(__x) {}

  void _M_incr() { 
//    _STLP_VERBOSE_ASSERT(_M_node != 0, _StlMsg_INVALID_ADVANCE)
    _M_node = _M_node->_M_next; 
  }
  bool operator==(const _Slist_iterator_base& __y ) const { 
    return _M_node == __y._M_node; 
  }
  bool operator!=(const _Slist_iterator_base& __y ) const { 
    return _M_node != __y._M_node; 
  }
};

# ifdef _STLP_USE_OLD_HP_ITERATOR_QUERIES
inline ptrdiff_t* _STLP_CALL distance_type(const _Slist_iterator_base&) { return 0; }
inline forward_iterator_tag _STLP_CALL iterator_category(const _Slist_iterator_base&) { return forward_iterator_tag(); }
#endif

template <class _Tp, class _Traits>
struct _Slist_iterator : public _Slist_iterator_base
{
  typedef _Tp value_type;
  typedef typename _Traits::pointer    pointer;
  typedef typename _Traits::reference  reference;
  typedef forward_iterator_tag iterator_category;
  typedef size_t size_type;
  typedef ptrdiff_t difference_type;
  
  typedef _Slist_iterator<_Tp, _Nonconst_traits<_Tp> > iterator;
  typedef _Slist_iterator<_Tp, _Const_traits<_Tp> >    const_iterator;
  typedef _Slist_iterator<_Tp, _Traits>                       _Self;

  typedef _Slist_node<value_type> _Node;

  _Slist_iterator(_Node* __x) : _Slist_iterator_base(__x) {}
  _Slist_iterator() : _Slist_iterator_base(0) {}
  _Slist_iterator(const iterator& __x) : _Slist_iterator_base(__x._M_node) {}

  reference operator*() const { return ((_Node*) _M_node)->_M_data; }

  _STLP_DEFINE_ARROW_OPERATOR

  _Self& operator++()
  {
    _M_incr();
    return *this;
  }
  _Self operator++(int)
  {
    _Self __tmp = *this;
    _M_incr();
    return __tmp;
  }
};

#ifdef _STLP_USE_OLD_HP_ITERATOR_QUERIES
template <class _Tp, class _Traits>
inline _Tp* _STLP_CALL value_type(const _Slist_iterator<_Tp, _Traits>&) { return (_Tp*)0; }
#endif /* OLD_QUERIES */

// Base class that encapsulates details of allocators and simplifies EH

template <class _Tp, class _Alloc> 
struct _Slist_base {
  _STLP_FORCE_ALLOCATORS(_Tp, _Alloc)
  typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type;
  typedef _Slist_node<_Tp> _Node;

  _Slist_base(const allocator_type& __a) : 
    _M_head(_STLP_CONVERT_ALLOCATOR(__a, _Node), _Slist_node_base() ) { 
    _M_head._M_data._M_next = 0; 
  }
  ~_Slist_base() { _M_erase_after(&_M_head._M_data, 0); }

protected:
  typedef typename _Alloc_traits<_Node,_Alloc>::allocator_type _M_node_allocator_type;

  _Slist_node_base* _M_erase_after(_Slist_node_base* __pos)
  {
    _Node* __next = (_Node*) (__pos->_M_next);
    _Slist_node_base* __next_next = __next->_M_next;
    __pos->_M_next = __next_next;
    _STLP_STD::_Destroy(&__next->_M_data);
    _M_head.deallocate(__next,1);
    return __next_next;
  }
  _Slist_node_base* _M_erase_after(_Slist_node_base*, _Slist_node_base*);

public:
  allocator_type get_allocator() const { 
    return _STLP_CONVERT_ALLOCATOR((const _M_node_allocator_type&)_M_head, _Tp); 
  }
  _STLP_alloc_proxy<_Slist_node_base, _Node, _M_node_allocator_type> _M_head;
};  

template <class _Tp, _STLP_DEFAULT_ALLOCATOR_SELECT(_Tp) >
class slist : protected _Slist_base<_Tp,_Alloc>
{
private:
  typedef _Slist_base<_Tp,_Alloc> _Base;
  typedef slist<_Tp,_Alloc> _Self;
public:
  typedef _Tp                value_type;
  typedef value_type*       pointer;
  typedef const value_type* const_pointer;
  typedef value_type&       reference;
  typedef const value_type& const_reference;
  typedef size_t            size_type;
  typedef ptrdiff_t         difference_type;
  typedef forward_iterator_tag _Iterator_category;

  typedef _Slist_iterator<_Tp, _Nonconst_traits<_Tp> >  iterator;
  typedef _Slist_iterator<_Tp, _Const_traits<_Tp> >     const_iterator;

  _STLP_FORCE_ALLOCATORS(_Tp, _Alloc)
  typedef typename _Base::allocator_type allocator_type;


private:
  typedef _Slist_node<_Tp>      _Node;
  typedef _Slist_node_base      _Node_base;
  typedef _Slist_iterator_base  _Iterator_base;

  _Node* _M_create_node(const value_type& __x) {
    _Node* __node = this->_M_head.allocate(1);
    _STLP_TRY {
      _Construct(&__node->_M_data, __x);
      __node->_M_next = 0;
    }
    _STLP_UNWIND(this->_M_head.deallocate(__node, 1));
    return __node;
  }
  
  _Node* _M_create_node() {
    _Node* __node = this->_M_head.allocate(1);
    _STLP_TRY {
      _Construct(&__node->_M_data);
      __node->_M_next = 0;
    }
    _STLP_UNWIND(this->_M_head.deallocate(__node, 1));
    return __node;
  }

public:
  allocator_type get_allocator() const { return _Base::get_allocator(); }

  explicit slist(const allocator_type& __a = allocator_type()) : _Slist_base<_Tp,_Alloc>(__a) {}

  slist(size_type __n, const value_type& __x,
        const allocator_type& __a =  allocator_type()) : _Slist_base<_Tp,_Alloc>(__a)
    { _M_insert_after_fill(&this->_M_head._M_data, __n, __x); }

  explicit slist(size_type __n) : _Slist_base<_Tp,_Alloc>(allocator_type())
    { _M_insert_after_fill(&this->_M_head._M_data, __n, value_type()); }

#ifdef _STLP_MEMBER_TEMPLATES
  // We don't need any dispatching tricks here, because _M_insert_after_range
  // already does them.
  template <class _InputIterator>
  slist(_InputIterator __first, _InputIterator __last,
        const allocator_type& __a _STLP_ALLOCATOR_TYPE_DFL) : 
    _Slist_base<_Tp,_Alloc>(__a)
  { _M_insert_after_range(&this->_M_head._M_data, __first, __last); }
# ifdef _STLP_NEEDS_EXTRA_TEMPLATE_CONSTRUCTORS
  // VC++ needs this crazyness
  template <class _InputIterator>
  slist(_InputIterator __first, _InputIterator __last) :
    _Slist_base<_Tp,_Alloc>(allocator_type())
  { _M_insert_after_range(&this->_M_head._M_data, __first, __last); }
# endif  
#else /* _STLP_MEMBER_TEMPLATES */
  slist(const_iterator __first, const_iterator __last,
        const allocator_type& __a =  allocator_type() ) :
    _Slist_base<_Tp,_Alloc>(__a)
    { _M_insert_after_range(&this->_M_head._M_data, __first, __last); }
  slist(const value_type* __first, const value_type* __last,
        const allocator_type& __a =  allocator_type()) : 
    _Slist_base<_Tp,_Alloc>(__a)
    { _M_insert_after_range(&this->_M_head._M_data, __first, __last); }
#endif /* _STLP_MEMBER_TEMPLATES */

  slist(const _Self& __x) : _Slist_base<_Tp,_Alloc>(__x.get_allocator())
    { _M_insert_after_range(&this->_M_head._M_data, __x.begin(), __x.end()); }

  _Self& operator= (const _Self& __x);

  ~slist() {}

public:
  // assign(), a generalized assignment member function.  Two
  // versions: one that takes a count, and one that takes a range.
  // The range version is a member template, so we dispatch on whether
  // or not the type is an integer.

  void assign(size_type __n, const _Tp& __val)
    { _M_fill_assign(__n, __val); }

  void _M_fill_assign(size_type __n, const _Tp& __val);

#ifdef _STLP_MEMBER_TEMPLATES

  template <class _InputIterator>
  void assign(_InputIterator __first, _InputIterator __last) {
    typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
    _M_assign_dispatch(__first, __last, _Integral());
  }

  template <class _Integer>
  void _M_assign_dispatch(_Integer __n, _Integer __val, const __true_type&)
    { _M_fill_assign((size_type) __n, (_Tp) __val); }

  template <class _InputIter>
  void
  _M_assign_dispatch(_InputIter __first, _InputIter __last,
		     const __false_type&) {
    _Node_base* __prev = &this->_M_head._M_data;
    _Node* __node = (_Node*) this->_M_head._M_data._M_next;
    while (__node != 0 && __first != __last) {
      __node->_M_data = *__first;
      __prev = __node;
      __node = (_Node*) __node->_M_next;
      ++__first;
    }
    if (__first != __last)
      _M_insert_after_range(__prev, __first, __last);
    else
      this->_M_erase_after(__prev, 0);
  }
#endif /* _STLP_MEMBER_TEMPLATES */

public:

  // Experimental new feature: before_begin() returns a
  // non-dereferenceable iterator that, when incremented, yields
  // begin().  This iterator may be used as the argument to
  // insert_after, erase_after, etc.  Note that even for an empty 
  // slist, before_begin() is not the same iterator as end().  It 
  // is always necessary to increment before_begin() at least once to
  // obtain end().
  iterator before_begin() { return iterator((_Node*) &this->_M_head._M_data); }
  const_iterator before_begin() const
    { return const_iterator((_Node*) &this->_M_head._M_data); }

  iterator begin() { return iterator((_Node*)this->_M_head._M_data._M_next); }
  const_iterator begin() const 
    { return const_iterator((_Node*)this->_M_head._M_data._M_next);}

  iterator end() { return iterator(0); }
  const_iterator end() const { return const_iterator(0); }

  size_type size() const { return _Sl_global_inst::size(this->_M_head._M_data._M_next); }
  
  size_type max_size() const { return size_type(-1); }

  bool empty() const { return this->_M_head._M_data._M_next == 0; }

  void swap(_Self& __x) { 
    _STLP_STD::swap(this->_M_head, __x._M_head); 
  }

public:
  reference front() { return ((_Node*) this->_M_head._M_data._M_next)->_M_data; }
  const_reference front() const 
    { return ((_Node*) this->_M_head._M_data._M_next)->_M_data; }
  void push_front(const value_type& __x)   {
    __slist_make_link(&this->_M_head._M_data, _M_create_node(__x));
  }

# ifndef _STLP_NO_ANACHRONISMS
  void push_front() { __slist_make_link(&this->_M_head._M_data, _M_create_node());}
# endif

  void pop_front() {
    _Node* __node = (_Node*) this->_M_head._M_data._M_next;
    this->_M_head._M_data._M_next = __node->_M_next;
    _STLP_STD::_Destroy(&__node->_M_data);
    this->_M_head.deallocate(__node, 1);
  }

  iterator previous(const_iterator __pos) {
    return iterator((_Node*) _Sl_global_inst::__previous(&this->_M_head._M_data, __pos._M_node));
  }
  const_iterator previous(const_iterator __pos) const {
    return const_iterator((_Node*) _Sl_global_inst::__previous(&this->_M_head._M_data, __pos._M_node));
  }

private:
  _Node* _M_insert_after(_Node_base* __pos, const value_type& __x) {
    return (_Node*) (__slist_make_link(__pos, _M_create_node(__x)));
  }

  _Node* _M_insert_after(_Node_base* __pos) {
    return (_Node*) (__slist_make_link(__pos, _M_create_node()));
  }

  void _M_insert_after_fill(_Node_base* __pos,
                            size_type __n, const value_type& __x) {
    for (size_type __i = 0; __i < __n; ++__i)
      __pos = __slist_make_link(__pos, _M_create_node(__x));
  }

#ifdef _STLP_MEMBER_TEMPLATES

  // Check whether it's an integral type.  If so, it's not an iterator.
  template <class _InIter>
  void _M_insert_after_range(_Node_base* __pos, 
                             _InIter __first, _InIter __last) {
    typedef typename _Is_integer<_InIter>::_Integral _Integral;
    _M_insert_after_range(__pos, __first, __last, _Integral());
  }

  template <class _Integer>
  void _M_insert_after_range(_Node_base* __pos, _Integer __n, _Integer __x,
                             const __true_type&) {
    _M_insert_after_fill(__pos, __n, __x);
  }

  template <class _InIter>
  void _M_insert_after_range(_Node_base* __pos,
                             _InIter __first, _InIter __last,
                             const __false_type&) {
    while (__first != __last) {
      __pos = __slist_make_link(__pos, _M_create_node(*__first));
      ++__first;
    }
  }

#else /* _STLP_MEMBER_TEMPLATES */

  void _M_insert_after_range(_Node_base* __pos,
                             const_iterator __first, const_iterator __last) {
    while (__first != __last) {
      __pos = __slist_make_link(__pos, _M_create_node(*__first));
      ++__first;
    }
  }
  void _M_insert_after_range(_Node_base* __pos,
                             const value_type* __first,
                             const value_type* __last) {
    while (__first != __last) {
      __pos = __slist_make_link(__pos, _M_create_node(*__first));
      ++__first;
    }
  }

#endif /* _STLP_MEMBER_TEMPLATES */

public:

  iterator insert_after(iterator __pos, const value_type& __x) {
    return iterator(_M_insert_after(__pos._M_node, __x));
  }

  iterator insert_after(iterator __pos) {
    return insert_after(__pos, value_type());
  }

  void insert_after(iterator __pos, size_type __n, const value_type& __x) {
    _M_insert_after_fill(__pos._M_node, __n, __x);
  }

#ifdef _STLP_MEMBER_TEMPLATES

  // We don't need any dispatching tricks here, because _M_insert_after_range
  // already does them.
  template <class _InIter>
  void insert_after(iterator __pos, _InIter __first, _InIter __last) {
    _M_insert_after_range(__pos._M_node, __first, __last);
  }

#else /* _STLP_MEMBER_TEMPLATES */

  void insert_after(iterator __pos,
                    const_iterator __first, const_iterator __last) {
    _M_insert_after_range(__pos._M_node, __first, __last);
  }
  void insert_after(iterator __pos,
                    const value_type* __first, const value_type* __last) {
    _M_insert_after_range(__pos._M_node, __first, __last);
  }

#endif /* _STLP_MEMBER_TEMPLATES */

  iterator insert(iterator __pos, const value_type& __x) {
    return iterator(_M_insert_after(_Sl_global_inst::__previous(&this->_M_head._M_data, __pos._M_node),
                    __x));
  }

  iterator insert(iterator __pos) {
    return iterator(_M_insert_after(_Sl_global_inst::__previous(&this->_M_head._M_data, __pos._M_node),
                                    value_type()));
  }

  void insert(iterator __pos, size_type __n, const value_type& __x) {
    _M_insert_after_fill(_Sl_global_inst::__previous(&this->_M_head._M_data, __pos._M_node), __n, __x);
  } 
    
#ifdef _STLP_MEMBER_TEMPLATES

  // We don't need any dispatching tricks here, because _M_insert_after_range
  // already does them.
  template <class _InIter>
  void insert(iterator __pos, _InIter __first, _InIter __last) {
    _M_insert_after_range(_Sl_global_inst::__previous(&this->_M_head._M_data, __pos._M_node), 
                          __first, __last);
  }

#else /* _STLP_MEMBER_TEMPLATES */

  void insert(iterator __pos, const_iterator __first, const_iterator __last) {
    _M_insert_after_range(_Sl_global_inst::__previous(&this->_M_head._M_data, __pos._M_node), 
                          __first, __last);
  }
  void insert(iterator __pos, const value_type* __first, 
                              const value_type* __last) {
    _M_insert_after_range(_Sl_global_inst::__previous(&this->_M_head._M_data, __pos._M_node), 
                          __first, __last);
  }

#endif /* _STLP_MEMBER_TEMPLATES */


public:
  iterator erase_after(iterator __pos) {
    return iterator((_Node*) this->_M_erase_after(__pos._M_node));
  }
  iterator erase_after(iterator __before_first, iterator __last) {
    return iterator((_Node*) this->_M_erase_after(__before_first._M_node, 
                                            __last._M_node));
  } 

  iterator erase(iterator __pos) {
    return iterator((_Node*) this->_M_erase_after(_Sl_global_inst::__previous(&this->_M_head._M_data, 
                                                    __pos._M_node)));
  }
  iterator erase(iterator __first, iterator __last) {
    return iterator((_Node*) this->_M_erase_after(
      _Sl_global_inst::__previous(&this->_M_head._M_data, __first._M_node), __last._M_node));
  }

  void resize(size_type new_size, const _Tp& __x);
  void resize(size_type new_size) { resize(new_size, _Tp()); }
  void clear() {
    this->_M_erase_after(&this->_M_head._M_data, 0); 
  }

public:
  // Moves the range [__before_first + 1, __before_last + 1) to *this,
  //  inserting it immediately after __pos.  This is constant time.
  void splice_after(iterator __pos, 
                    iterator __before_first, iterator __before_last)
  {
    if (__before_first != __before_last) {
      _Sl_global_inst::__splice_after(__pos._M_node, __before_first._M_node, 
                           __before_last._M_node);
    }
  }

  // Moves the element that follows __prev to *this, inserting it immediately
  //  after __pos.  This is constant time.
  void splice_after(iterator __pos, iterator __prev)
  {
    _Sl_global_inst::__splice_after(__pos._M_node,
                         __prev._M_node, __prev._M_node->_M_next);
  }

  // Removes all of the elements from the list __x to *this, inserting
  // them immediately after __pos.  __x must not be *this.  Complexity:
  // linear in __x.size().
  void splice_after(iterator __pos, _Self& __x)
  {
    _Sl_global_inst::__splice_after(__pos._M_node, &__x._M_head._M_data);
  }

  // Linear in distance(begin(), __pos), and linear in __x.size().
  void splice(iterator __pos, _Self& __x) {
    if (__x._M_head._M_data._M_next)
      _Sl_global_inst::__splice_after(_Sl_global_inst::__previous(&this->_M_head._M_data, __pos._M_node),
                           &__x._M_head._M_data, _Sl_global_inst::__previous(&__x._M_head._M_data, 0));
  }

  // Linear in distance(begin(), __pos), and in distance(__x.begin(), __i).
  void splice(iterator __pos, _Self& __x, iterator __i) {
    _Sl_global_inst::__splice_after(_Sl_global_inst::__previous(&this->_M_head._M_data, __pos._M_node),
                         _Sl_global_inst::__previous(&__x._M_head._M_data, __i._M_node),
                         __i._M_node);
  }

  // Linear in distance(begin(), __pos), in distance(__x.begin(), __first),
  // and in distance(__first, __last).
  void splice(iterator __pos, _Self& __x, iterator __first, iterator __last)
  {
    if (__first != __last)
      _Sl_global_inst::__splice_after(_Sl_global_inst::__previous(&this->_M_head._M_data, __pos._M_node),
                           _Sl_global_inst::__previous(&__x._M_head._M_data, __first._M_node),
                           _Sl_global_inst::__previous(__first._M_node, __last._M_node));
  }

public:
  void reverse() { 
    if (this->_M_head._M_data._M_next)
      this->_M_head._M_data._M_next = _Sl_global_inst::__reverse(this->_M_head._M_data._M_next);
  }

  void remove(const _Tp& __val); 
  void unique(); 
  void merge(_Self& __x);
  void sort();     

#ifdef _STLP_MEMBER_TEMPLATES
  template <class _Predicate>
  void remove_if(_Predicate __pred) {
    _Node_base* __cur = &this->_M_head._M_data;
    while (__cur->_M_next) {
      if (__pred(((_Node*) __cur->_M_next)->_M_data))
	this->_M_erase_after(__cur);
      else
	__cur = __cur->_M_next;
    }
  }

  template <class _BinaryPredicate> 
  void unique(_BinaryPredicate __pred) {
    _Node* __cur = (_Node*) this->_M_head._M_data._M_next;
    if (__cur) {
      while (__cur->_M_next) {
	if (__pred(((_Node*)__cur)->_M_data, 
		   ((_Node*)(__cur->_M_next))->_M_data))
	  this->_M_erase_after(__cur);
	else
	  __cur = (_Node*) __cur->_M_next;
      }
    }
  }

  template <class _StrictWeakOrdering>
  void merge(slist<_Tp,_Alloc>& __x,
	     _StrictWeakOrdering __comp) {
    _Node_base* __n1 = &this->_M_head._M_data;
    while (__n1->_M_next && __x._M_head._M_data._M_next) {
      if (__comp(((_Node*) __x._M_head._M_data._M_next)->_M_data,
		 ((_Node*)       __n1->_M_next)->_M_data))
	_Sl_global_inst::__splice_after(__n1, &__x._M_head._M_data, __x._M_head._M_data._M_next);
      __n1 = __n1->_M_next;
    }
    if (__x._M_head._M_data._M_next) {
      __n1->_M_next = __x._M_head._M_data._M_next;
      __x._M_head._M_data._M_next = 0;
    }
  }

  template <class _StrictWeakOrdering> 
  void sort(_StrictWeakOrdering __comp) {
    if (this->_M_head._M_data._M_next && this->_M_head._M_data._M_next->_M_next) {
      slist __carry;
      slist __counter[64];
      int __fill = 0;
      while (!empty()) {
	_Sl_global_inst::__splice_after(&__carry._M_head._M_data, &this->_M_head._M_data, this->_M_head._M_data._M_next);
	int __i = 0;
	while (__i < __fill && !__counter[__i].empty()) {
	  __counter[__i].merge(__carry, __comp);
	  __carry.swap(__counter[__i]);
	  ++__i;
	}
	__carry.swap(__counter[__i]);
	if (__i == __fill)
	  ++__fill;
      }
      
      for (int __i = 1; __i < __fill; ++__i)
	__counter[__i].merge(__counter[__i-1], __comp);
      this->swap(__counter[__fill-1]);
    }
  }
#endif /* _STLP_MEMBER_TEMPLATES */

};

template <class _Tp, class _Alloc>
inline bool  _STLP_CALL
operator==(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2)
{
  typedef typename slist<_Tp,_Alloc>::const_iterator const_iterator;
  const_iterator __end1 = _SL1.end();
  const_iterator __end2 = _SL2.end();

  const_iterator __i1 = _SL1.begin();
  const_iterator __i2 = _SL2.begin();
  while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2) {
    ++__i1;
    ++__i2;
   }
  return __i1 == __end1 && __i2 == __end2;
}

# define _STLP_EQUAL_OPERATOR_SPECIALIZED
# define _STLP_TEMPLATE_HEADER    template <class _Tp, class _Alloc>
# define _STLP_TEMPLATE_CONTAINER slist<_Tp, _Alloc>
# include <stl/_relops_cont.h>
# undef _STLP_TEMPLATE_CONTAINER
# undef _STLP_TEMPLATE_HEADER
# undef _STLP_EQUAL_OPERATOR_SPECIALIZED

_STLP_END_NAMESPACE

# if !defined (_STLP_LINK_TIME_INSTANTIATION)
#  include <stl/_slist.c>
# endif

#  undef  slist
#  define __slist__ __FULL_NAME(slist)

#if defined (_STLP_DEBUG) && !defined (_STLP_INTERNAL_DBG_SLIST_H)
# include <stl/debug/_slist.h>
#endif

_STLP_BEGIN_NAMESPACE
// Specialization of insert_iterator so that insertions will be constant
// time rather than linear time.

#ifdef _STLP_CLASS_PARTIAL_SPECIALIZATION

template <class _Tp, class _Alloc>
class insert_iterator<slist<_Tp, _Alloc> > {
protected:
  typedef slist<_Tp, _Alloc> _Container;
  _Container* container;
  typename _Container::iterator iter;
public:
  typedef _Container          container_type;
  typedef output_iterator_tag iterator_category;
  typedef void                value_type;
  typedef void                difference_type;
  typedef void                pointer;
  typedef void                reference;

  insert_iterator(_Container& __x, typename _Container::iterator __i) 
    : container(&__x) {
    if (__i == __x.begin())
      iter = __x.before_begin();
    else
      iter = __x.previous(__i);
  }

  insert_iterator<_Container>&
  operator=(const typename _Container::value_type& __val) { 
    iter = container->insert_after(iter, __val);
    return *this;
  }
  insert_iterator<_Container>& operator*() { return *this; }
  insert_iterator<_Container>& operator++() { return *this; }
  insert_iterator<_Container>& operator++(int) { return *this; }
};

#endif /* _STLP_CLASS_PARTIAL_SPECIALIZATION */

_STLP_END_NAMESPACE


# if defined ( _STLP_USE_WRAPPER_FOR_ALLOC_PARAM )
# include <stl/wrappers/_slist.h>
# endif

#endif /* _STLP_INTERNAL_SLIST_H */

// Local Variables:
// mode:C++
// End:

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Chief Technology Officer Apriorit Inc.
United States United States
ApriorIT is a software research and development company specializing in cybersecurity and data management technology engineering. We work for a broad range of clients from Fortune 500 technology leaders to small innovative startups building unique solutions.

As Apriorit offers integrated research&development services for the software projects in such areas as endpoint security, network security, data security, embedded Systems, and virtualization, we have strong kernel and driver development skills, huge system programming expertise, and are reals fans of research projects.

Our specialty is reverse engineering, we apply it for security testing and security-related projects.

A separate department of Apriorit works on large-scale business SaaS solutions, handling tasks from business analysis, data architecture design, and web development to performance optimization and DevOps.

Official site: https://www.apriorit.com
Clutch profile: https://clutch.co/profile/apriorit
This is a Organisation

33 members

Written By
Software Developer Codedgers Inc
Ukraine Ukraine
This member has not yet provided a Biography. Assume it's interesting and varied, and probably something to do with programming.

Comments and Discussions