Click here to Skip to main content
Click here to Skip to main content
Articles » Languages » C# » General » Downloads
 
Add your own
alternative version

Using OpenTK/OpenAL to Develop Cross Platform DIS VOIP Application

, 15 Mar 2010 BSD
Application allows voice communications (VOIP) utilizing the Distributed Interactive Simulation protocol (IEEE 1278.1)
MonoDISRadioTransmitter_SourceCode.zip
MonoDISRadioTransmitter
AudioIN
bin
Properties
StyleCop.Cache
AudioOUT
bin
Properties
DISNET
bin
DataStreams
DISPDU
Enumerations
Properties
Utilities
OpenDISRadioTransmitterExample
AudioCodecs
bin
OpenDISRadioTransmitter.csproj.user
OpenTK
OpenTK.Compatibility.dll
OpenTK.dll
OpenTK.GLControl.dll
Properties
Settings.settings
StyleCop.Cache
OpenDISRadioTransmitterSolution.suo
RadioFeatureSelection
bin
Properties
Sockets
bin
Properties
// Copyright (c) 1995-2009 held by the author(s).  All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
//  are met:
// 
//  * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the names of the Naval Postgraduate School (NPS)
//  Modeling Virtual Environments and Simulation (MOVES) Institute
// (http://www.nps.edu and http://www.MovesInstitute.org)
// nor the names of its contributors may be used to endorse or
//  promote products derived from this software without specific
// prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.

using System;
using System.Collections.Generic;
using System.Text;
using System.Diagnostics;
using System.Xml.Serialization;
using DISnet.DataStreamUtilities;

namespace DIS1998net
{

    /**
     * Section 5.2.22. Contains electromagnetic emmision regineratin parameters that are        variable throughout a scenario dependent on the actions of the participants in the simulation. Also provides basic parametric data that may be used to support low-fidelity simulations.
     *
     * Copyright (c) 2008, MOVES Institute, Naval Postgraduate School. All rights reserved.
     * This work is licensed under the BSD open source license, available at https://www.movesinstitute.org/licenses/bsd.html
     *
     * @author DMcG
     * Modified for use with C#:
     * Peter Smith (Naval Air Warfare Center - Training Systems Division)
     */
    [Serializable]
    [XmlRoot]
    public partial class FundamentalParameterData : Object
    {
        /** center frequency of the emission in hertz. */
        protected float  _frequency;

        /** Bandwidth of the frequencies corresponding to the fequency field. */
        protected float  _frequencyRange;

        /** Effective radiated power for the emission in DdBm. For a      radar noise jammer, indicates the peak of the transmitted power. */
        protected float  _effectiveRadiatedPower;

        /** Average repetition frequency of the emission in hertz. */
        protected float  _pulseRepetitionFrequency;

        /** Average pulse width  of the emission in microseconds. */
        protected float  _pulseWidth;

        /** Specifies the beam azimuth an elevation centers and corresponding half-angles     to describe the scan volume */
        protected float  _beamAzimuthCenter;

        /** Specifies the beam azimuth sweep to determine scan volume */
        protected float  _beamAzimuthSweep;

        /** Specifies the beam elevation center to determine scan volume */
        protected float  _beamElevationCenter;

        /** Specifies the beam elevation sweep to determine scan volume */
        protected float  _beamElevationSweep;

        /** allows receiver to synchronize its regenerated scan pattern to     that of the emmitter. Specifies the percentage of time a scan is through its pattern from its origion. */
        protected float  _beamSweepSync;


        /** Constructor */
        ///<summary>
        ///Section 5.2.22. Contains electromagnetic emmision regineratin parameters that are        variable throughout a scenario dependent on the actions of the participants in the simulation. Also provides basic parametric data that may be used to support low-fidelity simulations.
        ///</summary>
        public FundamentalParameterData()
        {
        }

        public int getMarshalledSize()
        {
            int marshalSize = 0; 

            marshalSize = marshalSize + 4;  // _frequency
            marshalSize = marshalSize + 4;  // _frequencyRange
            marshalSize = marshalSize + 4;  // _effectiveRadiatedPower
            marshalSize = marshalSize + 4;  // _pulseRepetitionFrequency
            marshalSize = marshalSize + 4;  // _pulseWidth
            marshalSize = marshalSize + 4;  // _beamAzimuthCenter
            marshalSize = marshalSize + 4;  // _beamAzimuthSweep
            marshalSize = marshalSize + 4;  // _beamElevationCenter
            marshalSize = marshalSize + 4;  // _beamElevationSweep
            marshalSize = marshalSize + 4;  // _beamSweepSync

            return marshalSize;
        }


        ///<summary>
        ///center frequency of the emission in hertz.
        ///</summary>
        public void setFrequency(float pFrequency)
        { 
            _frequency = pFrequency;
        }

        [XmlElement(Type= typeof(float), ElementName="frequency")]
        public float Frequency
        {
            get
            {
                return _frequency;
            }
            set
            {
                _frequency = value;
            }
        }

        ///<summary>
        ///Bandwidth of the frequencies corresponding to the fequency field.
        ///</summary>
        public void setFrequencyRange(float pFrequencyRange)
        { 
            _frequencyRange = pFrequencyRange;
        }

        [XmlElement(Type= typeof(float), ElementName="frequencyRange")]
        public float FrequencyRange
        {
            get
            {
                return _frequencyRange;
            }
            set
            {
                _frequencyRange = value;
            }
        }

        ///<summary>
        ///Effective radiated power for the emission in DdBm. For a      radar noise jammer, indicates the peak of the transmitted power.
        ///</summary>
        public void setEffectiveRadiatedPower(float pEffectiveRadiatedPower)
        { 
            _effectiveRadiatedPower = pEffectiveRadiatedPower;
        }

        [XmlElement(Type= typeof(float), ElementName="effectiveRadiatedPower")]
        public float EffectiveRadiatedPower
        {
            get
            {
                return _effectiveRadiatedPower;
            }
            set
            {
                _effectiveRadiatedPower = value;
            }
        }

        ///<summary>
        ///Average repetition frequency of the emission in hertz.
        ///</summary>
        public void setPulseRepetitionFrequency(float pPulseRepetitionFrequency)
        { 
            _pulseRepetitionFrequency = pPulseRepetitionFrequency;
        }

        [XmlElement(Type= typeof(float), ElementName="pulseRepetitionFrequency")]
        public float PulseRepetitionFrequency
        {
            get
            {
                return _pulseRepetitionFrequency;
            }
            set
            {
                _pulseRepetitionFrequency = value;
            }
        }

        ///<summary>
        ///Average pulse width  of the emission in microseconds.
        ///</summary>
        public void setPulseWidth(float pPulseWidth)
        { 
            _pulseWidth = pPulseWidth;
        }

        [XmlElement(Type= typeof(float), ElementName="pulseWidth")]
        public float PulseWidth
        {
            get
            {
                return _pulseWidth;
            }
            set
            {
                _pulseWidth = value;
            }
        }

        ///<summary>
        ///Specifies the beam azimuth an elevation centers and corresponding half-angles     to describe the scan volume
        ///</summary>
        public void setBeamAzimuthCenter(float pBeamAzimuthCenter)
        { 
            _beamAzimuthCenter = pBeamAzimuthCenter;
        }

        [XmlElement(Type= typeof(float), ElementName="beamAzimuthCenter")]
        public float BeamAzimuthCenter
        {
            get
            {
                return _beamAzimuthCenter;
            }
            set
            {
                _beamAzimuthCenter = value;
            }
        }

        ///<summary>
        ///Specifies the beam azimuth sweep to determine scan volume
        ///</summary>
        public void setBeamAzimuthSweep(float pBeamAzimuthSweep)
        { 
            _beamAzimuthSweep = pBeamAzimuthSweep;
        }

        [XmlElement(Type= typeof(float), ElementName="beamAzimuthSweep")]
        public float BeamAzimuthSweep
        {
            get
            {
                return _beamAzimuthSweep;
            }
            set
            {
                _beamAzimuthSweep = value;
            }
        }

        ///<summary>
        ///Specifies the beam elevation center to determine scan volume
        ///</summary>
        public void setBeamElevationCenter(float pBeamElevationCenter)
        { 
            _beamElevationCenter = pBeamElevationCenter;
        }

        [XmlElement(Type= typeof(float), ElementName="beamElevationCenter")]
        public float BeamElevationCenter
        {
            get
            {
                return _beamElevationCenter;
            }
            set
            {
                _beamElevationCenter = value;
            }
        }

        ///<summary>
        ///Specifies the beam elevation sweep to determine scan volume
        ///</summary>
        public void setBeamElevationSweep(float pBeamElevationSweep)
        { 
            _beamElevationSweep = pBeamElevationSweep;
        }

        [XmlElement(Type= typeof(float), ElementName="beamElevationSweep")]
        public float BeamElevationSweep
        {
            get
            {
                return _beamElevationSweep;
            }
            set
            {
                _beamElevationSweep = value;
            }
        }

        ///<summary>
        ///allows receiver to synchronize its regenerated scan pattern to     that of the emmitter. Specifies the percentage of time a scan is through its pattern from its origion.
        ///</summary>
        public void setBeamSweepSync(float pBeamSweepSync)
        { 
            _beamSweepSync = pBeamSweepSync;
        }

        [XmlElement(Type= typeof(float), ElementName="beamSweepSync")]
        public float BeamSweepSync
        {
            get
            {
                return _beamSweepSync;
            }
            set
            {
                _beamSweepSync = value;
            }
        }


        ///<summary>
        ///Marshal the data to the DataOutputStream.  Note: Length needs to be set before calling this method
        ///</summary>
        public void marshal(DataOutputStream dos)
        {
            try
            {
                dos.writeFloat((float)_frequency);
                dos.writeFloat((float)_frequencyRange);
                dos.writeFloat((float)_effectiveRadiatedPower);
                dos.writeFloat((float)_pulseRepetitionFrequency);
                dos.writeFloat((float)_pulseWidth);
                dos.writeFloat((float)_beamAzimuthCenter);
                dos.writeFloat((float)_beamAzimuthSweep);
                dos.writeFloat((float)_beamElevationCenter);
                dos.writeFloat((float)_beamElevationSweep);
                dos.writeFloat((float)_beamSweepSync);
            } // end try
            catch(Exception e)
            {
                Trace.WriteLine(e);
                Trace.Flush();
            }
        } // end of marshal method

        public void unmarshal(DataInputStream dis)
        {
            try
            {
                _frequency = dis.readFloat();
                _frequencyRange = dis.readFloat();
                _effectiveRadiatedPower = dis.readFloat();
                _pulseRepetitionFrequency = dis.readFloat();
                _pulseWidth = dis.readFloat();
                _beamAzimuthCenter = dis.readFloat();
                _beamAzimuthSweep = dis.readFloat();
                _beamElevationCenter = dis.readFloat();
                _beamElevationSweep = dis.readFloat();
                _beamSweepSync = dis.readFloat();
            } // end try
            catch(Exception e)
            {
                Trace.WriteLine(e);
                Trace.Flush();
            }
        } // end of unmarshal method

        ///<summary>
        ///This allows for a quick display of PDU data.  The current format is unacceptable and only used for debugging.
        ///This will be modified in the future to provide a better display.  Usage: 
        ///pdu.GetType().InvokeMember("reflection", System.Reflection.BindingFlags.InvokeMethod, null, pdu, new object[] { sb });
        ///where pdu is an object representing a single pdu and sb is a StringBuilder.
        ///Note: The supplied Utilities folder contains a method called 'DecodePDU' in the PDUProcessor Class that provides this functionality
        ///</summary>
        public void reflection(StringBuilder sb)
        {
            sb.Append("<FundamentalParameterData>"  + System.Environment.NewLine);
            try
            {
                sb.Append("<frequency type=\"float\">" + _frequency.ToString() + "</frequency> " + System.Environment.NewLine);
                sb.Append("<frequencyRange type=\"float\">" + _frequencyRange.ToString() + "</frequencyRange> " + System.Environment.NewLine);
                sb.Append("<effectiveRadiatedPower type=\"float\">" + _effectiveRadiatedPower.ToString() + "</effectiveRadiatedPower> " + System.Environment.NewLine);
                sb.Append("<pulseRepetitionFrequency type=\"float\">" + _pulseRepetitionFrequency.ToString() + "</pulseRepetitionFrequency> " + System.Environment.NewLine);
                sb.Append("<pulseWidth type=\"float\">" + _pulseWidth.ToString() + "</pulseWidth> " + System.Environment.NewLine);
                sb.Append("<beamAzimuthCenter type=\"float\">" + _beamAzimuthCenter.ToString() + "</beamAzimuthCenter> " + System.Environment.NewLine);
                sb.Append("<beamAzimuthSweep type=\"float\">" + _beamAzimuthSweep.ToString() + "</beamAzimuthSweep> " + System.Environment.NewLine);
                sb.Append("<beamElevationCenter type=\"float\">" + _beamElevationCenter.ToString() + "</beamElevationCenter> " + System.Environment.NewLine);
                sb.Append("<beamElevationSweep type=\"float\">" + _beamElevationSweep.ToString() + "</beamElevationSweep> " + System.Environment.NewLine);
                sb.Append("<beamSweepSync type=\"float\">" + _beamSweepSync.ToString() + "</beamSweepSync> " + System.Environment.NewLine);
                sb.Append("</FundamentalParameterData>"  + System.Environment.NewLine);
            } // end try
            catch(Exception e)
            {
                Trace.WriteLine(e);
                Trace.Flush();
            }
        } // end of reflection method

        public static bool operator !=(FundamentalParameterData a, FundamentalParameterData b)
        {
            return !(a == b);
        }

        public static bool operator ==(FundamentalParameterData a, FundamentalParameterData b)
        {
            if (System.Object.ReferenceEquals(a, b))
            {
                return true;
            }

            if (((object)a == null) || ((object)b == null))
            {
                return false;
            }

            return a.equals(b);
        }


        public override bool Equals(object obj)
        {
            return this == obj as FundamentalParameterData;
        }


        /**
         * Compares for reference equality and value equality.
         */
        public bool equals(FundamentalParameterData rhs)
        {
            bool ivarsEqual = true;

            if(rhs.GetType() != this.GetType())
                return false;


            if( ! (_frequency == rhs._frequency)) ivarsEqual = false;
            if( ! (_frequencyRange == rhs._frequencyRange)) ivarsEqual = false;
            if( ! (_effectiveRadiatedPower == rhs._effectiveRadiatedPower)) ivarsEqual = false;
            if( ! (_pulseRepetitionFrequency == rhs._pulseRepetitionFrequency)) ivarsEqual = false;
            if( ! (_pulseWidth == rhs._pulseWidth)) ivarsEqual = false;
            if( ! (_beamAzimuthCenter == rhs._beamAzimuthCenter)) ivarsEqual = false;
            if( ! (_beamAzimuthSweep == rhs._beamAzimuthSweep)) ivarsEqual = false;
            if( ! (_beamElevationCenter == rhs._beamElevationCenter)) ivarsEqual = false;
            if( ! (_beamElevationSweep == rhs._beamElevationSweep)) ivarsEqual = false;
            if( ! (_beamSweepSync == rhs._beamSweepSync)) ivarsEqual = false;

            return ivarsEqual;
        }

        /**
         * HashCode Helper
         */
        private int GenerateHash(int hash)
        {
            hash = hash << 5 + hash;
            return(hash);
        }


        /**
         * Return Hash
         */
        public override int GetHashCode()
        {
            int result = 0;

            result = GenerateHash(result) ^ _frequency.GetHashCode();
            result = GenerateHash(result) ^ _frequencyRange.GetHashCode();
            result = GenerateHash(result) ^ _effectiveRadiatedPower.GetHashCode();
            result = GenerateHash(result) ^ _pulseRepetitionFrequency.GetHashCode();
            result = GenerateHash(result) ^ _pulseWidth.GetHashCode();
            result = GenerateHash(result) ^ _beamAzimuthCenter.GetHashCode();
            result = GenerateHash(result) ^ _beamAzimuthSweep.GetHashCode();
            result = GenerateHash(result) ^ _beamElevationCenter.GetHashCode();
            result = GenerateHash(result) ^ _beamElevationSweep.GetHashCode();
            result = GenerateHash(result) ^ _beamSweepSync.GetHashCode();

            return result;
        }
    } // end of class
} // end of namespace

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The BSD License

Share

About the Author

pesmith
Software Developer
United States United States
No Biography provided

| Advertise | Privacy | Terms of Use | Mobile
Web01 | 2.8.141030.1 | Last Updated 15 Mar 2010
Article Copyright 2010 by pesmith
Everything else Copyright © CodeProject, 1999-2014
Layout: fixed | fluid