Click here to Skip to main content
13,661,661 members
Click here to Skip to main content
Add your own
alternative version

Tagged as


11 bookmarked
Posted 17 Aug 2017
Licenced CPOL

What is OpenCV?

, 17 Aug 2017
OpenCV is a software toolkit for processing real-time image and video, as well as providing analytics, and machine learning capabilities.

Editorial Note

This article is in the Product Showcase section for our sponsors at CodeProject. These articles are intended to provide you with information on products and services that we consider useful and of value to developers.

Development Benefits

Using OpenCV, a BSD licensed library, developers can access many advanced computer vision algorithms used for image and video processing in 2D and 3D as part of their programs. The algorithms are otherwise only found in high-end image and video processing software.

Powerful Built-In Video Analytics

Video analytics is much simpler to implement with OpenCV API’s for basic building blocks such as background removal, filters, pattern matching and classification.

Real-time video analytics capabilities include classifying, recognizing, and tracking: objects, animals, people, specific features such as vehicle number plates, animal species, and facial features such as faces, eyes, lips, chin, etc.

Hardware and Software Requirements

OpenCV is written in Optimized C/C++, is cross-platform by design and works on a wide variety of hardware platforms, including Intel Atom® platform, Intel® Core™ processor family, and Intel® Xeon® processor family.

Developers can program OpenCV using C++, C, Python*, and Java* on Operating Systems such as Windows*, many Linux* distros, Mac OS*, iOS* and Android*.

Although some cameras work better due to better drivers, if a camera has a working driver for the Operating System in use, OpenCV will be able to use it.

Hardware Optimizations

OpenCV takes advantage of multi-core processing and OpenCL™. Hence, OpenCV can also take advantage of hardware acceleration if integrated graphics is present.

OpenCV v3.2.0 release can use Intel optimized LAPACK/BLAS included in the Intel® Math Kernel Libraries (Intel® MKL) for acceleration. It can also use Intel® Threading Building Blocks (Intel® TBB) and Intel® Integrated Performance Primitives (Intel® IPP) for optimized performance on Intel platforms.

OpenCV uses the FFMPEG library and can use Intel® Quick Sync Video technology to accelerate encoding and decoding using hardware.

OpenCV and IoT

OpenCV has a wide range of applications in traditional computer vision applications such as optical character recognition or medical imaging.

For example, OpenCV can detect Bone fractures1. OpenCV can also help classify skin lesions and help in the early detection of skin melanomas2.

However, OpenCV coupled with the right processor and camera can become a powerful new class of computer vision enabled IoT sensor. This type of design can scale from simple sensors to multi-camera video analytics arrays. See Designing Scalable IoT Architectures for more information.3

IoT developers can use OpenCV to build embedded computer vision sensors for detecting IoT application events such as motion detection or people detection.

Designers can also use OpenCV to build even more advanced sensor systems such as face recognition, gesture recognition or even sentiment analysis as part of the IoT application flow.

IoT applications can also deploy OpenCV on Fog nodes at the Edge as an analytics platform for a larger number of camera based sensors.

For example, IoT applications use camera sensors with OpenCV for road traffic analysis, Advanced Driver Assistance Systems (ADAS)3, video surveillance4, and advanced digital signage with analytics in visual retail applications5.

OpenCV Integration

When developers integrated OpenCV with a neural-network backend, it unleashed the true power of computer vision. Using this approach, OpenCV works with Convolutional Neural Networks (CNN) and Deep Neural Networks (DNN) to allow developers to build innovative and powerful new vision applications.

To target multiple hardware platforms, these integrations need to be cross platform by design. Hardware optimization of deep learning algorithms breaks this design goal. The OpenVX architecture standard proposes resource and execution abstractions.

Hardware vendors can optimize implementations with a strong focus on specific platforms. This allows developers to write code that is portable across multiple vendors and platforms, as well as multiple hardware types.

Intel® Computer Vision SDK (Beta) is an integrated design framework and a powerful toolkit for developers to solve complex problems in computer vision. It includes Intel’s implementation of the OpenVX API as well as custom extensions. It supports OpenCL custom kernels and can integrate CNN or DNN.

The pre-built and included OpenCV binary has hooks for Intel® VTune™Amplifier for profiling vision applications.

Getting Started:

Try this tutorial on basic people recognition. Also, see OpenCV 3.2.0 Documentation for more tutorials.

Related Software:

Intel® Computer Vision SDK - Accelerated computer vision solutions based on OpenVX standard, integrating OpenCV and deep learning support using the included Deep Learning (DL) Deployment Toolkit.

Intel® Integrated Performance Primitives (IPP) - Programming toolkit for high-quality, production-ready, low-level building blocks for image processing, signal processing, and data processing (data compression/decompression and cryptography) applications.

Intel® Math Kernel Library (MKL) - Library with accelerated math processing routines to increase application performance.

Intel® Media SDK - A cross-platform API for developing media applications using Intel® Quick Sync Video technology.

Intel® SDK for OpenCL™ Applications - Accelerated and optimized application performance with Intel® Graphics Technology compute offload and high-performance media pipelines.

Intel® Distribution for Python* - Specially optimized Python distribution for High-Performance Computing (HPC) with accelerated compute-intensive Python computational packages like NumPy, SciPy, and scikit-learn.

Intel® Quick Sync Video - Leverage dedicated media processing capabilities of Intel® Graphics Technology to decode and encode fast, enabling the processor to complete other tasks and improving system responsiveness.

Intel® Threading Building Blocks (TBB) - Library for shared-memory parallel programming and intra-node distributed memory programming.


  1. Bone fracture detection using OpenCV
  2. Mole Investigator: Detecting Cancerous Skin Moles Through Computer Vision
  3. Designing Scalable IoT Architectures
  4. Advanced Driver Assistance Systems (ADAS)
  5. Smarter Security Camera: A Proof of Concept (PoC) Using the Intel® IoT Gateway
  6. Introduction to Developing and Optimizing Display Technology


This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


About the Author

Intel Corporation
United States United States
You may know us for our processors. But we do so much more. Intel invents at the boundaries of technology to make amazing experiences possible for business and society, and for every person on Earth.

Harnessing the capability of the cloud, the ubiquity of the Internet of Things, the latest advances in memory and programmable solutions, and the promise of always-on 5G connectivity, Intel is disrupting industries and solving global challenges. Leading on policy, diversity, inclusion, education and sustainability, we create value for our stockholders, customers and society.
Group type: Organisation

44 members

You may also be interested in...

Comments and Discussions

-- There are no messages in this forum --
Permalink | Advertise | Privacy | Cookies | Terms of Use | Mobile
Web06-2016 | 2.8.180810.1 | Last Updated 17 Aug 2017
Article Copyright 2017 by Intel Corporation
Everything else Copyright © CodeProject, 1999-2018
Layout: fixed | fluid