Image Processing Using GDI+






4.66/5 (32 votes)
May 8, 2006
2 min read

155869

5568
This article describes the implementation of an image processing tool.
Introduction
There are many image processing tools similar to what I describe in this article. In this personal tool, I have used very basic image processing algorithms. Here I have focused on brightness, color inversion, contrast, blur, sharpness, and black and white color algorithms. I have used GDI+ for loading the image into memory, with the help of formulas mentioned for each kind of image processing. The code includes the CImageProcess.cpp and CImageProcess.h files. I would like to suggest that for image processing, do not use GetPixel
and SetPixel
. Performance wise, they are very slow. For more information, check this article: Rotate a Bitmap at Any Angle Without GetPixel/SetPixel.
Original Image
Algorithm and Code
- Brightness
An image can be light or sark. If we want to have more light in the image, we should decrease the RGB value. If we want an image to be darker, we should increase the RGB value.
Formula
Color = Color + Value(may be –ve) if (Color <0) Color = 0; if (Color>255) Color = 255;
For example, if we want to decrease the red color component:
Red = Red - DecrementVal
To increase the red color component:
Red = Red + IncrementVal
The code
BITMAPINFO bi; BOOL bRes; char *buf; // Bitmap header bi.bmiHeader.biSize = sizeof(bi.bmiHeader); bi.bmiHeader.biWidth = m_nWidth; bi.bmiHeader.biHeight = m_nHeight; bi.bmiHeader.biPlanes = 1; bi.bmiHeader.biBitCount = 32; bi.bmiHeader.biCompression = BI_RGB; bi.bmiHeader.biSizeImage = m_nWidth * 4 * m_nHeight; bi.bmiHeader.biClrUsed = 0; bi.bmiHeader.biClrImportant = 0; // Buffer buf = (char *) malloc(m_nWidth * 4 * m_nHeight); // Don't use getPixel and SetPixel.It's very slow. // Get the all scanline. bRes = GetDIBits(hMemDC, m_hBitmap, 0, m_nHeight, buf, &bi, DIB_RGB_COLORS); long nCount=0; for (int i=0; i<m_nHeight; ++i) { for (int j=0; j<m_nWidth; ++j) { long lVal=0; memcpy(&lVal, &buf[nCount], 4); // Get the reverse order int b = GetRValue(lVal); int g = GetGValue(lVal); int r = GetBValue(lVal); // Red r += nRedVal; if (r >255) { r = 255; } if (r <0) { r = 0; } // Green g += nGreenVal; if (g>255) { g = 255; } if (g<0) { g = 0; } // Blue b += nBlueVal; if (b >255) { b = 255; } if (b<0) { b = 0; } // Store reverse order lVal = RGB(b, g, r); memcpy(&buf[nCount], &lVal, 4); // Increment with 4. RGB color take 4 bytes. // The high-order byte must be zero // See in MSDN COLORREF nCount+=4; } } // Set again SetDIBits(hMemDC, m_hBitmap, 0, bRes, buf, &bi, DIB_RGB_COLORS); free(buf);
- Invert Color
When we invert color, we get the opposite colors of the current pixels.
Formula
Color = 255 – Color; if (Color <0) Color = 0; if (Color>255) Color = 255;
The code
// Same header format for (int i=0; i<m_nHeight; ++i) { for (int j=0; j<m_nWidth; ++j) { long lVal=0; memcpy(&lVal, &buf[nCount], 4); int b = 255-GetRValue(lVal); int g = 255-GetGValue(lVal); int r = 255-GetBValue(lVal); lVal = RGB(b, g, r); memcpy(&buf[nCount], &lVal, 4); nCount+=4; } }
- Contrast Color
Contrasting colors are colors that are opposite on the color wheel. In a high contrast image, you can see definite edges, and the different elements of that image are accented. In a low contrast image, all the colors are nearly the same, and it's hard to make out the details.
Formula
Color = (((Color - 128) * ContrastVal) / 100) +128 if (Color <0) Color = 0; if (Color>255) Color = 255;
Here, the contrast value is between 0 and 200.
The code
for (int i=0; i<m_nHeight; ++i) { for (int j=0; j<m_nWidth; ++j) { long lVal=0; memcpy(&lVal, &buf[nCount], 4); // Get from buffer in reverse order int b = GetRValue(lVal); int g = GetGValue(lVal); int r = GetBValue(lVal); r = ((r-128)*nContrastVal)/100 +128; g = ((g-128)*nContrastVal)/100 +128; b = ((b-128)*nContrastVal)/100 +128; // Red if (r >255) { r = 255; } if (r <0) { r = 0; } // Green if (g>255) { g = 255; } if (g<0) { g = 0; } // Blue if (b >255) { b = 255; } if (b<0) { b = 0; } // Store in reverse order lVal = RGB((int)b, (int)g, (int)r); memcpy(&buf[nCount], &lVal, 4); nCount+=4; } }
- Blur
Blur is the well-known effect on computer screens, in fact on all pixel devices, where the diagonal and curved lines are displayed as a series of little zigzag horizontal and vertical lines.
Formula
Color = (C1+C2+C3+C4+C5)/5
For more details about blur and anti-aliasing check this article: Creating graphics for the Web: Anti-aliasing.
Here, C1 is the current pixel. C2, C3, C4, and C5 are the nearby pixels.
The code
pOriBuf = (char *) malloc(m_nWidth * 4 * m_nHeight); // Store new value into tempravary buffer char *tmpBuf = (char *) malloc(m_nWidth * 4 * m_nHeight); bRes = GetDIBits(hMemDC, m_hBitmap, 0, m_nHeight, pOriBuf, &bi, DIB_RGB_COLORS); long nCount=0; long c1, c2, c3, c4, c5; // Retrive from original buffer // Caluculate the value and store new value into tmpBuf for (int i=0; i<m_nHeight; ++i) { for (int j=0; j<m_nWidth; ++j) { long lVal=0; memcpy(&lVal, &pOriBuf[nCount], 4); int b = GetRValue(lVal); int g = GetGValue(lVal); int r = GetBValue(lVal); c1 = r; // Red if ((nCount < ((m_nHeight-1)*m_nWidth*4l)) && (nCount > (m_nWidth*4))) { memcpy(&lVal, &pOriBuf[nCount-(m_nWidth*4l)], 4); c2 = GetBValue(lVal); memcpy(&lVal, &pOriBuf[nCount+4], 4); c3 = GetBValue(lVal); memcpy(&lVal, &pOriBuf[(nCount+(m_nWidth*4l))], 4); c4 = GetBValue(lVal); memcpy(&lVal, &pOriBuf[nCount-4], 4); c5 = GetBValue(lVal); r = (c1+c2+c3+c4+c5)/5; } // Green c1 = g; if ((nCount < ((m_nHeight-1)*m_nWidth*4l)) && (nCount > (m_nWidth*4))) { memcpy(&lVal, &pOriBuf[(nCount-(m_nWidth*4l))], 4); c2 = GetGValue(lVal); memcpy(&lVal, &pOriBuf[nCount+4], 4); c3 = GetGValue(lVal); memcpy(&lVal, &pOriBuf[(nCount+(m_nWidth*4l))], 4); c4 = GetGValue(lVal); memcpy(&lVal, &pOriBuf[nCount-4], 4); c5 = GetGValue(lVal); g = (c1+c2+c3+c4+c5)/5; } // Blue c1 = b; if ((nCount < ((m_nHeight-1)*m_nWidth*4l)) && (nCount > (m_nWidth*4))) { memcpy(&lVal, &pOriBuf[(nCount-(m_nWidth*4l))], 4); c2 = GetRValue(lVal); memcpy(&lVal, &pOriBuf[nCount+4], 4); c3 = GetRValue(lVal); memcpy(&lVal, &pOriBuf[(nCount+(m_nWidth*4l))], 4); c4 = GetRValue(lVal); memcpy(&lVal, &pOriBuf[nCount-4], 4); c5 = GetRValue(lVal); b = (c1+c2+c3+c4+c5)/5; } // Store in reverse order lVal = RGB(b, g, r); memcpy(&tmpBuf[nCount], &lVal, 4); nCount+=4; } } // Store tmpBuf SetDIBits(hMemDC, m_hBitmap, 0, bRes, tmpBuf, &bi, DIB_RGB_COLORS); free(pOriBuf); free(tmpBuf);
- Sharpness
Formula
Color = (C1*5) – (C2+C3+C4+C5). if (Color <0) Color = 0; if (Color>255) Color = 255;
The code
for (int i=0; i<m_nHeight; ++i) { for (int j=0; j<m_nWidth; ++j) { long lVal=0; memcpy(&lVal, &pOriBuf[nCount], 4); int b = GetRValue(lVal); int g = GetGValue(lVal); int r = GetBValue(lVal); c1 = r; // Red if ((nCount < ((m_nHeight-1)*m_nWidth*4l)) && (nCount > (m_nWidth*4))) { memcpy(&lVal, &pOriBuf[nCount-(m_nWidth*4l)], 4); c2 = GetBValue(lVal); memcpy(&lVal, &pOriBuf[nCount+4], 4); c3 = GetBValue(lVal); memcpy(&lVal, &pOriBuf[(nCount+(m_nWidth*4l))], 4); c4 = GetBValue(lVal); memcpy(&lVal, &pOriBuf[nCount-4], 4); c5 = GetBValue(lVal); r = (c1*5) - (c2+c3+c4+c5); } // Green c1 = g; if ((nCount < ((m_nHeight-1)*m_nWidth*4l)) && (nCount > (m_nWidth*4))) { memcpy(&lVal, &pOriBuf[(nCount-(m_nWidth*4l))], 4); c2 = GetGValue(lVal); memcpy(&lVal, &pOriBuf[nCount+4], 4); c3 = GetGValue(lVal); memcpy(&lVal, &pOriBuf[(nCount+(m_nWidth*4l))], 4); c4 = GetGValue(lVal); memcpy(&lVal, &pOriBuf[nCount-4], 4); c5 = GetGValue(lVal); g = (c1*5) - (c2+c3+c4+c5); } // Blue c1 = b; if ((nCount < ((m_nHeight-1)*m_nWidth*4l)) && (nCount > (m_nWidth*4))) { memcpy(&lVal, &pOriBuf[(nCount-(m_nWidth*4l))], 4); c2 = GetRValue(lVal); memcpy(&lVal, &pOriBuf[nCount+4], 4); c3 = GetRValue(lVal); memcpy(&lVal, &pOriBuf[(nCount+(m_nWidth*4l))], 4); c4 = GetRValue(lVal); memcpy(&lVal, &pOriBuf[nCount-4], 4); c5 = GetRValue(lVal); b = (c1*5) - (c2+c3+c4+c5); } // Red if (r >255) { r = 255; } if (r <0) { r = 0; } // Green if (g>255) { g = 255; } if (g<0) { g = 0; } // Blue if (b >255) { b = 255; } if (b<0) { b = 0; } // Store in reverse order lVal = RGB(b, g, r); memcpy(&tmpBuf[nCount], &lVal, 4); nCount+=4; } }
- Black and white color
Black and white images can be arrived at by giving the same color value for Red, Green, and Blue.
Formula
Color = (R+G+B)/3; R = Color; G = Color; B = Color;
The code
for (int i=0; i<m_nHeight; ++i) { for (int j=0; j<m_nWidth; ++j) { long lVal=0; memcpy(&lVal, &buf[nCount], 4); // Get the color value from buffer int b = GetRValue(lVal); int g = GetGValue(lVal); int r = GetBValue(lVal); // get the average color value lVal = (r+g+b)/3; // assign to RGB color lVal = RGB(lVal, lVal, lVal); memcpy(&buf[nCount], &lVal, 4); nCount+=4; } }