Click here to Skip to main content
14,430,403 members

Face Recognition Project: Introduction To Face Recognition

Rate this:
4.11 (8 votes)
Please Sign up or sign in to vote.
4.11 (8 votes)
1 May 2011CPOL
An introduction to face recognition


As the necessity for higher levels of security rises, technology is bound to swell to fulfill these needs. Any new creation, enterprise, or development should be uncomplicated and acceptable for end users in order to spread worldwide. This strong demand for user-friendly systems which can secure our assets and protect our privacy without losing our identity in a sea of numbers, grabbed the attention and studies of scientists toward what’s called biometrics. There is a more scientific Mathematical Introduction For Face Recognition: Pixel Arithmetic for readers who are interested in the mathematical perspective and representation of pixels in face recognition applications. The link also contains a VB.NET implementation of the Pixel class.

Biometrics is the emerging area of bioengineering; it is the automated method of recognizing person based on a physiological or behavioral characteristic. There exist several biometric systems such as signature, finger prints, voice, iris, retina, hand geometry, ear geometry, and face. Among these systems, facial recognition appears to be one of the most universal, collectable, and accessible systems.

Biometric face recognition, otherwise known as Automatic Face Recognition (AFR), is a particularly attractive biometric approach, since it focuses on the same identifier that humans use primarily to distinguish one person from another: their “faces”. One of its main goals is the understanding of the complex human visual system and the knowledge of how humans represent faces in order to discriminate different identities with high accuracy.

The face recognition problem can be divided into two main stages: face verification (or authentication), and face identification (or recognition).

The detection stage is the first stage; it includes identifying and locating a face in an image.
The recognition stage is the second stage; it includes feature extraction, where important information for discrimination is saved, and the matching, where the recognition result is given with the aid of a face database.
face recognition methods have been proposed. In the vast literature on the topic, there are different classifications of the existing techniques. The following is one possible high-level classification:

  • Holistic Methods: The whole face image is used as the raw input to the recognition system. An example is the well-known PCA-based technique introduced by Kirby and Sirovich, followed by Turk and Pentland.
  • Local Feature-based Methods: Local features are extracted, such as eyes, nose and mouth. Their locations and local statistics (appearance) are the input to the recognition stage. An example of this method is Elastic Bunch Graph Matching (EBGM).

Although progress in face recognition has been encouraging, the task has also turned out to be a difficult endeavor. In the following sections, we give a brief review on technical advances and analyze technical challenges.


Automated face recognition is a relatively new concept. Developed in the 1960s, the first semi-automated system for face recognition required the administrator to locate features (such as eyes, ears, nose, and mouth) on the photographs before it calculated distances and ratios to a common reference point, which were then compared to reference data. In the 1970s, Goldstein, Harmon, and Lesk used 21 specific subjective markers such as hair color and lip thickness to automate the recognition. The problem with both of these early solutions was that the measurements and locations were manually computed.

In 1988, Kirby and Sirovich applied principle component analysis, a standard linear algebra technique, to the face recognition problem. This was considered somewhat of a milestone as it showed that less than one hundred values were required to accurately code a suitably aligned and normalized face image.

In 1991, Turk and Pentland discovered that while using the eigenfaces techniques, the residual error could be used to detect faces in images; a discovery that enabled reliable real-time automated face recognition systems. Although the approach was somewhat constrained by the environmental factors, the nonetheless created significant interest in furthering development of automated face recognition technologies. The technology first captured the public’s attention from the media reaction to a trial implementation at the January 2001 Super Bowl, which captured surveillance images and compared them to a database of digital mugshots. This demonstration initiated much-needed analysis on how to use the technology to support national needs while being considerate of the public’s social and privacy concerns.

Today, face recognition technology is being used to combat passport fraud, support law enforcement, identify missing children, and minimize benefit/identity fraud.

Image 1


As one of the most successful applications of image analysis and understanding, face recognition has recently gained significant attention. Over the last ten years or so, it has become a popular area of research in computer vision and one of the most successful applications of image analysis and understanding.

Some examples of face recognition application areas are:

Enterprise SecurityComputer and physical access control
Government Events CriminalTerrorists screening; Surveillance
Immigration/CustomsIllegal immigrant detection; Passport/ ID Card authentication
CasinoFiltering suspicious gamblers /VIPs
ToyIntelligent robotic
VehicleSafety alert system based on eyelid movement

The largest face recognition systems in the world with over 75 million photographs that is actively used for visa processing operates in the U.S. Department of State.

In 2006, the performance of the latest face recognition algorithms was evaluated in the Face Recognition Grand Challenge. High-resolution face images, 3-D face scans, and iris images were used in the tests. The results indicated that the new algorithms are 10 times more accurate than the face recognition algorithms of 2002 and 100 times more accurate than those of 1995. Some of the algorithms were able to outperform human participants in recognizing faces and could uniquely identify identical twins.

Weaknesses vs. Strengths

Among the different biometric techniques, facial recognition may not be the most reliable and efficient but it has several advantages over the others: it is natural, easy to use and does not require aid from the test subject. Properly designed systems installed in airports, multiplexes, and other public places can detect presence of criminals among the crowd. Other biometrics like fingerprints, iris, and speech recognition cannot perform this kind of mass scanning. However, questions have been raised on the effectiveness of facial recognition software in cases of railway and airport security. Critics of the technology complain that the London Borough of Newham scheme has never recognized a single criminal, despite several criminals in the system's database living in the Borough and the system having been running for several years. "Not once, as far as the police know, has Newham's automatic facial recognition system spotted a live target."

Despite the successes of many systems, many issues remain to be addressed. Among those issues, the following are prominent for most systems: the illumination problem, the pose problem, scale variability, images taken years apart, glasses, moustaches, beards, low quality image acquisition, partially occluded faces, etc. Figures below show different images which present some of the problems encountered in face recognition. An additional important problem, on top of the images to be recognized, is how different face recognition systems are compared.



The illumination problem is illustrated in the following figure, where the same face appears differently due to the change in lighting. More specifically, the changes induced by illumination could be larger than the differences between individuals, causing systems based on comparing images to misclassify the identity of the input image.


The pose problem is illustrated in the following figure, where the same face appears differently due to changes in viewing condition. The pose problem has been divided into three categories:

  1. The simple case with small rotation angles
  2. The most commonly addressed case, when there is a set of training image pairs (frontal and rotated images), and
  3. The most difficult case, when training image pairs are not available and illumination variations are present


Despite the potential benefits of this technology, many citizens are concerned that their privacy will be invaded. Some fear that it could lead to a “total surveillance society,” with the government and other authorities having the ability to know where you are, and what you are doing, at all times. This is not to be an underestimated concept as history has shown that states have typically abused such access before.

Continue to the Process of Face Recognition

Continue to Mathematical Introduction For Face Recognition: Pixel Arithmetic


This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


About the Author

Ali Tarhini
Software Developer (Senior) Microgen
Lebanon Lebanon
For more articles and extreme topics please check out my personal website

Comments and Discussions

Questionsource code Multiple Face Recognition using OpenCv and Visual Studio 2012: Pin
Member 123934264-May-16 6:19
MemberMember 123934264-May-16 6:19 
QuestionHello please Pin
Member 1220873318-Apr-16 3:31
MemberMember 1220873318-Apr-16 3:31 
AnswerRe: Hello please Pin
Member 123934264-May-16 6:19
MemberMember 123934264-May-16 6:19 
QuestionPlease Pin
Member 1226473414-Jan-16 11:30
MemberMember 1226473414-Jan-16 11:30 
Questionface recognition evaluator Pin
grekkkko30-Jan-13 6:50
Membergrekkkko30-Jan-13 6:50 
GeneralApplication of face recognition in Sky Scraping(AI) Pin
Ugwu Hillary Odinaka30-Oct-12 7:27
MemberUgwu Hillary Odinaka30-Oct-12 7:27 
QuestionA question Pin
dommy1A15-Sep-12 8:37
Memberdommy1A15-Sep-12 8:37 
Generalvoice identification Pin
pilla.jagadeesh18-Jun-10 21:27
Memberpilla.jagadeesh18-Jun-10 21:27 
QuestionPlease help me: face recognition program for absence system Pin
Alveen Scofield28-May-10 21:07
MemberAlveen Scofield28-May-10 21:07 
AnswerRe: Please help me: face recognition program for absence system Pin
Ali Tarhini28-May-10 21:09
MemberAli Tarhini28-May-10 21:09 
GeneralWow I always thought this was made up Pin
jasonp122-Jan-10 17:06
Memberjasonp122-Jan-10 17:06 

General General    News News    Suggestion Suggestion    Question Question    Bug Bug    Answer Answer    Joke Joke    Praise Praise    Rant Rant    Admin Admin   

Use Ctrl+Left/Right to switch messages, Ctrl+Up/Down to switch threads, Ctrl+Shift+Left/Right to switch pages.

Technical Blog
Posted 26 Dec 2009

Tagged as


52 bookmarked