Well, if you take a look here[^], you'll see that it really was meant to happen.
And, as I said, you can du numerical approximations instead of the insane formulas, as other people have here on codeproject.
However, I see that I might have to clean the solutions somethimes, and that I could discard some solutions based on what I found here[^].
Edit:
You could replace the function with the one blow, as it should provide you with the information to clean up the calculated roots:
Public Function PolynominalEquationSolver(ByVal a As Complex, ByVal b As Complex, ByVal c As Complex, ByVal d As Complex, ByVal e As Complex) As List(Of Complex)
Dim result As New List(Of Complex)
Dim x1, x2, x3, x4 As New Complex
If a <> 0 Then
x1 = 1 / 2 * Complex.Sqrt(Complex.Pow(b, 2) / (4 * Complex.Pow(a, 2)) + Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)) / (3 * 2 ^ (1 / 3) * a) + (2 ^ (1 / 3) * (12 * a * e  3 * b * d + Complex.Pow(c, 2))) / (3 * a * Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)))  (2 * c) / (3 * a)) _
 1 / 2 * Complex.Sqrt(Complex.Pow(b, 2) / (2 * Complex.Pow(a, 2))  (Complex.Pow(b, 3) / Complex.Pow(a, 3) + (4 * b * c) / Complex.Pow(a, 2)  (8 * d) / a) / (4 * Complex.Sqrt(Complex.Pow(b, 2) / (4 * Complex.Pow(a, 2)) + Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)) / (3 * 2 ^ (1 / 3) * a) + (2 ^ (1 / 3) * (12 * a * e  3 * b * d + Complex.Pow(c, 2))) / (3 * a * Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)))  (2 * c) / (3 * a)))  Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)) / (3 * 2 ^ (1 / 3) * a)  (2 ^ (1 / 3) * (12 * a * e  3 * b * d + Complex.Pow(c, 2))) / (3 * a * Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)))  (4 * c) / (3 * a))  b / (4 * a)
x2 = 1 / 2 * Complex.Sqrt(Complex.Pow(b, 2) / (4 * Complex.Pow(a, 2)) + Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)) / (3 * 2 ^ (1 / 3) * a) + (2 ^ (1 / 3) * (12 * a * e  3 * b * d + Complex.Pow(c, 2))) / (3 * a * Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)))  (2 * c) / (3 * a)) _
+ 1 / 2 * Complex.Sqrt(Complex.Pow(b, 2) / (2 * Complex.Pow(a, 2))  (Complex.Pow(b, 3) / Complex.Pow(a, 3) + (4 * b * c) / Complex.Pow(a, 2)  (8 * d) / a) / (4 * Complex.Sqrt(Complex.Pow(b, 2) / (4 * Complex.Pow(a, 2)) + Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)) / (3 * 2 ^ (1 / 3) * a) + (2 ^ (1 / 3) * (12 * a * e  3 * b * d + Complex.Pow(c, 2))) / (3 * a * Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)))  (2 * c) / (3 * a)))  Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)) / (3 * 2 ^ (1 / 3) * a)  (2 ^ (1 / 3) * (12 * a * e  3 * b * d + Complex.Pow(c, 2))) / (3 * a * Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)))  (4 * c) / (3 * a))  b / (4 * a)
x3 = 1 / 2 * Complex.Sqrt(Complex.Pow(b, 2) / (4 * Complex.Pow(a, 2)) + Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)) / (3 * 2 ^ (1 / 3) * a) + (2 ^ (1 / 3) * (12 * a * e  3 * b * d + Complex.Pow(c, 2))) / (3 * a * Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)))  (2 * c) / (3 * a)) _
 1 / 2 * Complex.Sqrt(Complex.Pow(b, 2) / (2 * Complex.Pow(a, 2))  (Complex.Pow(b, 3) / Complex.Pow(a, 3) + (4 * b * c) / Complex.Pow(a, 2)  (8 * d) / a) / (4 * Complex.Sqrt(Complex.Pow(b, 2) / (4 * Complex.Pow(a, 2)) + Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)) / (3 * 2 ^ (1 / 3) * a) + (2 ^ (1 / 3) * (12 * a * e  3 * b * d + Complex.Pow(c, 2))) / (3 * a * Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)))  (2 * c) / (3 * a)))  Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)) / (3 * 2 ^ (1 / 3) * a)  (2 ^ (1 / 3) * (12 * a * e  3 * b * d + Complex.Pow(c, 2))) / (3 * a * Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)))  (4 * c) / (3 * a))  b / (4 * a)
x4 = 1 / 2 * Complex.Sqrt(Complex.Pow(b, 2) / (4 * Complex.Pow(a, 2)) + Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)) / (3 * 2 ^ (1 / 3) * a) + (2 ^ (1 / 3) * (12 * a * e  3 * b * d + Complex.Pow(c, 2))) / (3 * a * Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)))  (2 * c) / (3 * a)) _
+ 1 / 2 * Complex.Sqrt(Complex.Pow(b, 2) / (2 * Complex.Pow(a, 2))  (Complex.Pow(b, 3) / Complex.Pow(a, 3) + (4 * b * c) / Complex.Pow(a, 2)  (8 * d) / a) / (4 * Complex.Sqrt(Complex.Pow(b, 2) / (4 * Complex.Pow(a, 2)) + Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)) / (3 * 2 ^ (1 / 3) * a) + (2 ^ (1 / 3) * (12 * a * e  3 * b * d + Complex.Pow(c, 2))) / (3 * a * Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)))  (2 * c) / (3 * a)))  Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)) / (3 * 2 ^ (1 / 3) * a)  (2 ^ (1 / 3) * (12 * a * e  3 * b * d + Complex.Pow(c, 2))) / (3 * a * Complex.Pow(Complex.Sqrt(Complex.Pow(72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), 2)  4 * Complex.Pow(12 * a * e  3 * b * d + Complex.Pow(c, 2), 3))  72 * a * c * e + 27 * a * Complex.Pow(d, 2) + 27 * Complex.Pow(b, 2) * e  9 * b * c * d + 2 * Complex.Pow(c, 3), (1 / 3)))  (4 * c) / (3 * a))  b / (4 * a)
Dim a0, a1, a2 As New Complex
a2 = 3 * b * b / (8 * a * a) + c / a
a1 = b * b * b / (8 * a * a * a)  b * c / (2 * a * a) + d / a
a0 = 3 * b * b * b * b / (256 * a * a * a * a) + c * b * b / (16 * a * a * a)  b * d / (4 * a * a) + e / a
If (a2 * a2 + 12 * a0).Real > 0 And (2 * a2).Real < Complex.Sqrt(a2 * a2 + 12 * a0).Real And (2 * Complex.Pow(a2 * a2 + 12 * a0, 3 / 2)).Real = (2 * a2 * a2 * a2  72 * a2 * a0 + 27 * a1 * a1).Real Then
MessageBox.Show("The original polynomial has two complex roots and one double real root")
ElseIf a1.Real = 0 And (a2 * a2  4 * a0).Real = 0 And a2.Real > 0 Then
MessageBox.Show("The original polynomial is (x^2+b^2)^2 where b is different from 0")
ElseIf a2.Real < 0 And (a2 * a2  a * a0).Real > 0 And (a2 * a2 + 12 * a0).Real > 0 And (2 * Complex.Pow(a2 * a2 + 12 * a0, 3 / 2)).Real = (2 * a2 * a2 * a2  72 * a2 * a0 + 27 * a1 * a1).Real Then
MessageBox.Show("The original polynomial has three different real roots, but among them is only one double root and the other two single rootes are on the same side of the double one")
ElseIf a2.Real < 0 And (a2 * a2  a * a0).Real > 0 And (a2 * a2 + 12 * a0).Real > 0 And (2 * Complex.Pow(a2 * a2 + 12 * a0, 3 / 2)).Real = (2 * a2 * a2 * a2 + 72 * a2 * a0  27 * a1 * a1).Real Then
MessageBox.Show("The original polynomial has three different real roots, but among them is only one double root and the other two single roots are on the opposite sides of the double one")
ElseIf a1.Real = 0 And (a2 * a2  4 * a0).Real = 0 And a2.Real < 0 Then
MessageBox.Show("The original polynomial has two double real roots")
ElseIf (a2 * a2 + 12 * a0).Real = 0 And (8 * a2 * a2 * a2 + 27 * a1 * a1).Real = 0 And a2.Real < 0 Then
MessageBox.Show("The original polynomial has two different real roots and one of them is a triple root")
ElseIf a0.Real = 0 And a1.Real = 0 And a2.Real = 0 Then
MessageBox.Show("The original polynomial has only one fourfold real root which is zero")
End If
result.Add(x1)
result.Add(x2)
result.Add(x3)
result.Add(x4)
ElseIf a = 0 And b <> 0 Then
result.Add(Complex.Pow(Complex.Sqrt(Complex.Pow(27 * Complex.Pow(b, 2) * e + 9 * b * c * d  2 * Complex.Pow(c, 3), 2) + 4 * Complex.Pow(3 * b * d  Complex.Pow(c, 2), 3))  27 * Complex.Pow(b, 2) * e + 9 * b * c * d  2 * Complex.Pow(c, 3), (1 / 3)) / (3 * 2 ^ (1 / 3) * b)  (2 ^ (1 / 3) * (3 * b * d  Complex.Pow(c, 2))) / (3 * b * Complex.Pow(Complex.Sqrt(Complex.Pow(27 * Complex.Pow(b, 2) * e + 9 * b * c * d  2 * Complex.Pow(c, 3), 2) + 4 * Complex.Pow(3 * b * d  Complex.Pow(c, 2), 3))  27 * Complex.Pow(b, 2) * e + 9 * b * c * d  2 * Complex.Pow(c, 3), (1 / 3)))  c / (3 * b))
result.Add(((1  New Complex(0, 1) * Complex.Sqrt(3)) * Complex.Pow(Complex.Sqrt(Complex.Pow(27 * Complex.Pow(b, 2) * e + 9 * b * c * d  2 * Complex.Pow(c, 3), 2) + 4 * Complex.Pow(3 * b * d  Complex.Pow(c, 2), 3))  27 * Complex.Pow(b, 2) * e + 9 * b * c * d  2 * Complex.Pow(c, 3), (1 / 3))) / (6 * 2 ^ (1 / 3) * b) + ((1 + New Complex(0, 1) * Complex.Sqrt(3)) * (3 * b * d  Complex.Pow(c, 2))) / (3 * 2 ^ (2 / 3) * b * Complex.Pow(Complex.Sqrt(Complex.Pow(27 * Complex.Pow(b, 2) * e + 9 * b * c * d  2 * Complex.Pow(c, 3), 2) + 4 * Complex.Pow(3 * b * d  Complex.Pow(c, 2), 3))  27 * Complex.Pow(b, 2) * e + 9 * b * c * d  2 * Complex.Pow(c, 3), (1 / 3)))  c / (3 * b))
result.Add(((1 + New Complex(0, 1) * Complex.Sqrt(3)) * Complex.Pow(Complex.Sqrt(Complex.Pow(27 * Complex.Pow(b, 2) * e + 9 * b * c * d  2 * Complex.Pow(c, 3), 2) + 4 * Complex.Pow(3 * b * d  Complex.Pow(c, 2), 3))  27 * Complex.Pow(b, 2) * e + 9 * b * c * d  2 * Complex.Pow(c, 3), (1 / 3))) / (6 * 2 ^ (1 / 3) * b) + ((1  New Complex(0, 1) * Complex.Sqrt(3)) * (3 * b * d  Complex.Pow(c, 2))) / (3 * 2 ^ (2 / 3) * b * Complex.Pow(Complex.Sqrt(Complex.Pow(27 * Complex.Pow(b, 2) * e + 9 * b * c * d  2 * Complex.Pow(c, 3), 2) + 4 * Complex.Pow(3 * b * d  Complex.Pow(c, 2), 3))  27 * Complex.Pow(b, 2) * e + 9 * b * c * d  2 * Complex.Pow(c, 3), (1 / 3)))  c / (3 * b))
ElseIf a = 0 And b = 0 And c <> 0 Then
result.Add((Complex.Sqrt(Complex.Pow(d, 2)  4 * c * e)  d) / (2 * c))
result.Add((Complex.Sqrt(Complex.Pow(d, 2)  4 * c * e)  d) / (2 * c))
ElseIf a = 0 And b = 0 And c = 0 And d <> 0 Then
result.Add(e / d)
Else
result.Add(New Complex(0, 0))
End If
Return result
End Function
Kind regards
Kenneth
modified 27Feb13 17:39pm.
