

Common Pitfalls

in

System.XML 4.0

By Kurt Evenepoel, April 2010
Technical Lead .NET
Wolters-Kluwer Belgium

by Kurt Evenepoel, 2010 2

Table of contents

Introduction .. 3
Basic knowledge .. 3

Pitfalls.. 4
Default settings for reading and writing examined... 4

XmlWriterSettings .. 4
XmlReaderSettings ... 5

How to handle white-space for mixed content... 6
About significant and insignificant white-space, and pretty-printing 6
Inconsistencies between XDocument, XmlDocument and XmlReaders/Writers

regarding white-space.. 8
Conclusion .. 11

How to deal with quirky namespaces ... 11
Handling DTD’s .. 12

Conclusion .. 14
Base URI’s and Streams, consequences for schemas.. 14

What went obsolete in .NET 4.0? ... 19
Changes in System.XML and related namespaces.. 20

What changed in the System.XML namespace? ... 20
XmlConvert... 20
XmlReader .. 20
XmlReaderSettings ... 21
XmlResolver.. 21
XmlTextReader ... 22
XmlUrlResolver... 22
XmlValidatingReader.. 22
XmlWriterSettings .. 23
DtdProcessing and NamespaceHandling ... 23

What changed in the System.Xml.Serialization namespace? 23
XmlSerializer, XmlSerializerFactory.. 23

What changed in the System.Xml.Xsl namespace?... 23
XslCompiledTransform ... 23

What changed in the System.Xml.Linq namespace .. 24
SaveOptions.. 24
XDocument, XElement and XStreamingElement ... 24
XNode... 26

Conclusion... 27

by Kurt Evenepoel, 2010 3

Introduction
This small session presents my own research behind some of the pitfalls found in

System.Xml and child namespaces. We’ll be discussing :

o non-obvious differences between XDocument and XmlReaders/Writers

o namespace handling with duplicate namespace declarations

o how to properly treat mixed-content XML files

o difficulties with Streams and SchemaSet

Finally we’ll take a look at what’s been made obsolete and what’s brand new in the

different namespaces in System.Xml for .NET 4.0.

You will need:

o Visual Studio 2010 (most will work with VS2008 SP1 too)

o A strong base of C# and XML, working knowledge of XPath and XSLT to

understand every example. If you also know DTD’s and XML Schema’s all the

better!

This session is not intended to teach you about how to process basic XML files in C#, you

should know this already, sorry!

If you’re in a hurry, skip forward to the conclusions of each topic, everything in between

is background information or proof.

Basic knowledge
There are four major ways of working with native XML:

• Serialization of .NET classes (not discussed)

• Using XmlReaders and XmlWriters

• Using XmlDocument

• Using XDocument

You should know how to use all of these.

As a quick refresher, here’s an example of how to create an XDocument:
XDocument document = new XDocument("root",
 new XElement("first-child",
 new XAttribute("an-attribute", "with a valu e"),
 "some text inside"));

As you’ll see, XDocument is the class to use (with caution) for handling most situations.

by Kurt Evenepoel, 2010 4

Pitfalls

Default settings for reading and writing examined
Default settings should ideally be the same for every overload. The .NET library behaves

predictably in this regard for XML reading and writing with the XmlReader.Create and

XmlWriter.Create static methods. That is, if you take into account some considerations.

See included project: XmlReaderWriterDefaults

XmlWriterSettings
The factory method XmlWriter.Create has a pretty consistent behaviour across

constructor calls if you know what to watch out for.

CloseOutput and Encoding are the big differences between the different constructors.

Constructors based on in-memory string structures like StringBuilders by default use

what Microsoft calls ‘Unicode’ (this does not apply to Streams, whose representation in-

memory isn’t ‘text’ per se). The others, based on filestreams that don’t use

StringBuilders, by default use UTF-8 (which obviously is Unicode too, but another

Unicode format than ‘Unicode’ or UTF-16). CloseOutput is true for overloads that use a

filename. That means you are responsible for closing the stream yourself, for example

by using the ‘using’ keyword, unless you hand it a filename, in that case it is closed

automatically when the reader or writer is disposed.

There were no significant changes between .NET 2.0 and 4.0 except for

“NamespaceHandling”, and code should have stayed compatible.

The follow are the defaults shared for every constructor call tested:

CheckCharacters TRUE

ConformanceLevel Document

Indent FALSE

IndentChars (space)

NamespaceHandling (added in .NET 4.0) Default

NewLineChars (newline)

NewLineHandling Replace

NewLineOnAttributes FALSE

OmitXmlDeclaration FALSE

Differences between every constructor call are:

constructor

CloseOutp

ut Encoding

XmlWriter 2.0

by Kurt Evenepoel, 2010 5

XmlWriter.Create(dummyStream) FALSE UTF8Encoding

XmlWriter.Create("c:\in.xml") TRUE UTF8Encoding

XmlWriter.Create(dummyBuilder) FALSE UnicodeEncoding

 XmlWriter.Create(new

StringWriter(dummyBuilder) FALSE UnicodeEncoding

XmlWriter.Create(Create("c:\in2.xml")) TRUE UTF8Encoding

XmlWriter.Create(dummyStream,

defaultSettings) FALSE UTF8Encoding

XmlWriter.Create(@"c:\in.xml",

defaultSettings) TRUE UTF8Encoding

XmlWriter.Create(dummyBuilder,

defaultSettings) FALSE UnicodeEncoding

XmlWriter.Create(new

StringWriter(dummyBuilder), defaultSettings) FALSE UnicodeEncoding

XmlWriter.Create(XmlWriter.Create(@"c:\in2.

xml", defaultSettings)) TRUE UTF8Encoding

XmlWriter 4.0

XmlWriter.Create(dummyStream) FALSE UTF8Encoding

XmlWriter.Create("c:\in.xml") TRUE UTF8Encoding

XmlWriter.Create(dummyBuilder) FALSE UnicodeEncoding

 XmlWriter.Create(new

StringWriter(dummyBuilder) FALSE UnicodeEncoding

XmlWriter.Create(dummyStream,

defaultSettings) FALSE UTF8Encoding

XmlWriter.Create(@"c:\in.xml",

defaultSettings) TRUE UTF8Encoding

XmlWriter.Create(dummyBuilder,

defaultSettings) FALSE UnicodeEncoding

XmlWriter.Create(new

StringWriter(dummyBuilder), defaultSettings) FALSE UnicodeEncoding

XmlWriter.Create(XmlWriter.Create(@"c:\in2.

xml", defaultSettings)) TRUE UTF8Encoding

XmlReaderSettings
The factory method XmlReader.Create has a consistent behaviour across all constructor

calls tested, both for .NET 2.0 as for .NET 4.0. ProhibitDtd is now obsolete and was

replaced by DtdProcessing. This does mean that all old code will have warnings, but

those are easy to remedy. The Encoding and CloseInput settings behave similar to the

writer settings: streams are closed automatically if you hand the factory method a

filename. Encoding is ‘Unicode’ (UTF-16) if you’re using a StringBuilder as a base to

write to it.

CheckCharacters TRUE

CloseInput FALSE

by Kurt Evenepoel, 2010 6

ConformanceLevel Document

DtdProcessing (added in .NET 4.0)

Prohibit (compatible with

ProhibitDtd=true)

IgnoreComments FALSE

IgnoreProcessingInstructions FALSE

IgnoreWhitespace FALSE

LineNumberOffset 0

LinePositionOffset 0

MaxCharactersFromEntities 0

MaxCharactersInDocument 0

NameTable (empty)

ProhibitDtd TRUE

Schemas System.Xml.Schema.XmlSchemaSet

ValidationFlags

ProcessIdentityConstraints,

AllowXmlAttributes

ValidationType None

How to handle white-space for mixed content

See included projects: XsltWhiteSpace, XdocumentWhitespace

About significant and insignificant white-space, and pretty-printing
Whitespaces are tabs, newlines or spaces (but not ‘non-breaking spaces’ – in HTML that

is the character entity - it’s a special space that prevents going to a new line).

Pretty-printing an XML document means to indent it so its more easily human-

readable.
<div>
 <p>
 C# :
 My fave
 </p>

 <p>
 VB.NET :
 Jean's fave
 </p>
</div>

This XML is pretty-printed.

The original could have been like this:
<div>
 <p>C# : My fave </p>

 <p>VB.NET : Jea n's fave</p>
</div>

by Kurt Evenepoel, 2010 7

If there is no DTD (doctype declaration) specified in the XML, whitespace is not

ignorable
1
. A DTD can specify which whitespaces can be ignored, and which cannot. An

XML parser has no idea whether whitespace is meant to be important (significant), and

should keep all whitespaces it’s not instructed to discard by the DTD. The XML

specification does not force this (XML processors can choose if they want to treat spaces

as significant or insignificant), but it is the only ‘safe’ default, and companies like IBM

and Oracle also figured this out. The default behaviour should be to keep whitespaces

(but you’ll see later this is not the implementation with XDocument nor XmlDocument).

Notice in the above document that tabs are inserted. Tabs are valid XML whitespace.

The in-memory DOM doesn’t change until the document is parsed again from the

output that includes the new tabs – for example after performing an XSL tranforsmation

on it.

Similarily, an XSLT processor has no clue what to do with whitespaces, and it’s default

behaviour is to preserve spaces. (see: http://www.w3schools.com/XSL/el_preserve-

space.asp
2
).

To make spaces insignificant, you need to use the <xsl:strip-space /> element at the top

of your stylesheet. To verify we’ll run the following stylesheet over both versions:
<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www .w3.org/1999/XSL/Transform"
>
 <xsl:output method="text" />
</xsl:stylesheet>

This is an ‘empty’ stylesheet. Providing an <xsl:template> for an element overrides the

default handling, but we’re not going to do that. The default handling for any element is

to strip the element itself, strip the attributes, and keep all text, and this is exactly what

we want to do.

• Non-pretty printed version
 C# : My fave
 VB.NET : Jean's fave

• Pretty-printed version
 C# :
 My fave

 VB.NET :
 Jean's fave

As you can see, pretty-printing actually changes the content of the document

somewhat! There are newlines and tabs added that were not there in the original

marked up docoment. In most cases this is harmless, especially with serialized .NET or

data objects, but with markup languages like XHTML and possibly with other mixed-

content formats, that’s an inconvenience. To actually get what you needed, the XSLT

would turn more complex and sometimes use variables and the normalize-space

by Kurt Evenepoel, 2010 8

function. For a good example, take a look on MSDN (http://msdn.microsoft.com/en-

us/library/ms256063.aspx)

Inconsistencies between XDocument, XmlDocument and
XmlReaders/Writers regarding white-space
In this light, a nasty difference between XmlReaders/Writers and XDocument is the way

whitespace is treated. (see http://msdn.microsoft.com/en-us/library/bb387014.aspx)

The defaults between XDocument and XmlReader are different:

XDocument XmlReader

LoadOptions.PreserveWhitespace XmlReaderSettings.IgnoreWhitespace =

false (default)

(not specified: does not preserve

whitespace, default)

XmlReaderSettings.IgnoreWhitespace =

true

This means that using an XmlReader means you will be using ‘standard’ XML handling

with the default settings. Using XDocument means that mixed content will come out

with quirks in the spacing for mixed content, when using default settings...quite

unexpected?

Additionally, XmlReaderSettings and LoadOptions can conflict. By handing it a

‘LoadOptions’ argument when loading the XDocument, the LoadOptions are used as

you’d expect except when using an XmlReader/Writer, then the options of the

reader/writer are used.

XDocument.Load(string) Ignored

XDocument.Load(string,LoadOptions.PreserveWhitespace) Preserved

XDocument.Load(XmlReader,

LoadOptions.PreserveWhitespace),

XmlReaderSettings.IgnoreWhitespace=false

Preserved

XDocument.Load(XmlReader, LoadOptions.None),

XmlReaderSettings.IgnoreWhitespace=true

Ignored

XDocument.Load(XmlReader,

LoadOptions.PreserveWhitespace, LoadOptions.None),

XmlReaderSettings.IgnoreWhitespace=false

Preserved

XDocument.Load(XmlReader),

XmlReaderSettings.IgnoreWhitespace=true

Ignored

XmlReader, XmlReaderSettings.IgnoreWhitespace=false Preserved

XmlReader, XmlReaderSettings.IgnoreWhitespace=true Ignored

This difficulty exists since XDocument exists, and tests point out that it still exists in .NET

4.0- the API has not changed in that regard.

Why is this important? Look at the results. We had a text with 2 elements: one

and one <i>. In the original document, there is a space between the two. This is what

XML calls ‘mixed content’. Notice how the space is stripped in some of the overloads

that ignore whitespace. The whitespace is significant, and an XSLT processor usually

by Kurt Evenepoel, 2010 9

keeps this space. The result is that there is a difference in the ‘Value’ property of

XDocument (which is essentially the same as an xslt without any templates defined),

depending on your settings:

• whitespace not preserved
Paragraph1Paragraph2

• whitespace preserved
Paragraph1 Paragraph2

Where you had marked up text before, that correctly had spaces in the right places,

everything sticks together now.

Again, this is not very important if you are serializing classes, but it is quite important if

you are doing transformations on text, where any mixed content text will have spaces

missing in the rendering if you used XDocument without LoadOptions.

A similar story can be told for writing out the XDocument:

XDocument.Save has a SaveOptions argument wich can be set to disable formatting.

This has the same effect as putting the XmlWriterSettings “Indent” property to “false”.

By default indenting on save is enabled, but that’s not always what you want and can

cause your XSLT’s to need a lot of ‘normalize-space()’ calls for ‘mixed content’.

XDocument XmlWriter

SaveOptions.DisableFormatting XmlWriterSettings.Indent = false (default)

(not specified: uses ‘pretty print’ XML,

default)

XmlWriterSettings.Indent = true

XmlWriterSettings and SaveOptions can’t conflict however: there is no overload on

XDocument.Save that allows for giving both an XmlWriter and SaveOptions, making it

easier for you:

XDocument.Save(TextWriter,

SaveOptions.DisableFormatting)

Not indented

XDocument.Save(TextWriter) Indented

XDocument.Save(XmlWriter),

XmlWriterSettings.Indent=true

Indented

XDocument.Save(XmlWriter),

XmlWriterSettings.Indent=false

Not indented

For ToString(SaveOptions) the same principles are at work: default ToString() will indent

your XML, if you don’t want this you need to explicitly tell it not to. ToString() does not

include the XML declaration.

By default, XDocument applies pretty-print, and XmlWriter does not. By default

XDocument strips the spaces again on load, but may strip more than was added by

saving. XmlReader does not strip any spaces by default.

That leaves the XmlDocument class. How would this class behave? Prepare to be

confused.. Because this one doesn’t listen to your XmlReaderSettings.

by Kurt Evenepoel, 2010 10

For example:
using (XmlReader rdr = XmlReader.Create("source.xml ", new XmlReaderSettings
{
 IgnoreWhitespace = false
}))
{
 XmlDocument doc = new XmlDocument();
 doc.Load(rdr);
 return doc;
}

This code fragment strips whitespace, even though you explicitly told it to keep them!

The source document with the following contents (shortened to fit on one line)
..<div>Paragraph1 Paragraph2< /div>..

actually gets read as the following:
..<div>Paragraph1Paragraph2</ div>..

So even with XmlReaderSettings set to keep whitespaces, XmlDocument strips them.

It’s the reading of the document that is affected. These different ways were tested and

all yielded the same result:

• XmlDocument.Load with XmlReaderSettings IgnoreWhitespace=true

• XmlDocument.ParseXml

• XmlDocument.Load with XmlReaderSettings IgnoreWhitespace=false

• XmlDocument.Load without XmlReaderSettings

All of these yielded a result that stripped spaces regardless of XmlReaderSettings.

Why is that? Because, unlike with XDocument where the XmlReader/Writer settings

take precedence, when it comes to white-space, XmlDocument uses the

“PreserveWhitespace” property before loading. This property overrides the settings

with which the document is read, and it’s by default, set to… False. The default is the

same between XmlDocument and XDocument, but the way to override it isn’t.

In short, to properly use the XmlDocument class with white-space, you have to use code

similar to this:
using (XmlReader rdr = XmlReader.Create("source.xml "))
{
 XmlDocument doc = new XmlDocument { PreserveWhitespace = true }
 doc.Load(rdr);
 return doc;
}

This option is a recipe for bugs, there *will* be times you forgot to preserve white space

because its not listed in the constructor and code needs to be delivered. Yesterday.

Another possible solution is to put the xml:space=”preserve” attribute in your source:
<div xml:space="preserve">Paragraph1 Paragraph2</div>

This way the XmlDocument *does* keep the white-spaces. But this is very annoying.

You can read more on http://www.ibm.com/developerworks/xml/library/x-

tipwhitesp.html. This option requires you to change your XML files, which is also

unpleasant and you may not even be in control of the source format.

by Kurt Evenepoel, 2010 11

Conclusion
So what is the safest way to parse XML that contains mixed content?

• while loading, explicitly keep whitespaces

o XmlReader + XmlReaderSettings.IgnoreWhitespace = false (default)

o XDocument.Load(LoadOptions.PreserveWhitespace)

• When saving intermediary results, don’t indent

o XmlWriter + XmlWriterSettings.Indent = false (default)

o XDocument.Save(SaveOptions.DisableFormatting)

• Alternatively, only use overloads for XDocument that use XmlReaders/Writers,

in this case the XmlReader/Writer settings are used. This is my personal

preferred method- always use my own readers and writers.

• When using XmlDocument, XmlReader/WriterSettings are ignored- you need to

set the PreserveWhitespace property to true.

This shows that for mixed content you cannot use the easiest overloads of the static

methods in the XDocument class. This has remained exactly the same in .NET 3.5 and

.NET 4.0, but causes confusion. In theory, the XDocument interpretation is too liberal in

assuming whitespaces can be safely ignored to safely work with marked up text

documents, because it requires a lot of care to check the call every time. Practically,

most errors that spring from this non-standard behaviour are usually non-blocking,

unless you’re in the publishing or markup industry where the XML is on a different level

of difficulty to parse, not just used as a human-readable, interchangeable data storage

format. XDocument’s defaults are geared towards data, not marked up text. The

same goes for XmlDocument, but the ways to override the defaulst are different.

How to deal with quirky namespaces

See included project: Namespaces

Namespaces can be handy, but they can also cause you countless headaches.

In the following example XML document, there is a duplicate namespace declaration on

the local-disk element. I’ve also included the same namespace uri twice but with a
different prefix, on the same element.
<laptop xmlns:work="http://hard.work.com"
xmlns:work2="http://too.hard.work.com" xmlns:work3="http://hard.work.com">
 <work2:drive>
 <local-disk xmlns:work="http://hard.work.com">C:\</local-disk>
 < work:network-drive>Z:\</work:network-drive>
 </work2:drive>
</laptop>

Loading this file with the new option to remove duplicate namespaces yields the

following result:
<laptop xmlns:work="http://hard.work.com"
xmlns:work2="http://very.hard.work.com" xmlns:work3 ="http://hard.work.com">
 <work2:drive>

by Kurt Evenepoel, 2010 12

 <local-disk>C:\</local-disk>
 < work3:network-drive>Z:\</work3:network-drive>
 </work2:drive>
</laptop>

Notice that references to the ‘work’ namespace have been replaced by the ‘work3’

namespace, and that the duplicate namespace declaration on the local-disk element

was removed. Notice also that, since the work and work3 namespaces have the same

URI they’re logically equivalent. So .NET’s decision to put everything on the same

namespace makes sense. It would be logical then maybe to remove the ‘work’

namespace automatically too, but .NET leaves it declared.

This table explains how loading an XDocument affects the quirky namespaces:

Duplicate URI in the namespaces of

an ancestor, but different alias

Elements take the last defined namespace alias,

even if they were originally written with another

alias

Duplicate URI in the namespace of

an element, with the same alias

Unable to load document

Namespace and alias is also defined

on an ancestor, default

The duplicate namespace declaration stays as

read

Namespace and alias is also defined

on an ancestor, and

NamespaceHandling.OmitDuplicates

is used

The duplicate namespace declaration is removed

from the child

Handling DTD’s

See included project: UsingDTDs

Using the DtdProcessing enumeration, wich can be set with XmlReaderSettings for an

XmlReader, you can allow the use of DTD’s. By default, DTD’s are not allowed because

its an URI, provided by the document itself, that the processor is instructed to visit. This

could be used for distributed attacks or with other security risks – for example someone

put a DTD in 20 000 documents you’re parsing, every 0.05 seconds your server will

attempt to connect to an uri of the attacker’s choice.

However, a document is possibly not parseable (this means NO DOM POSSIBLE) without

its DTD if it has one because the document may contain entities that are described in

the DTD. .NET 4.0 now includes the option to load XML documents that contain DTD’s

without actually getting the DTD and visiting the URI mentioned, using XML Readers.

This was already possible using XDocuments in .NET 3.5.

Prohibit No DTD’s are allowed, an exception occurs if you try to load a

document that has one (default for XmlReaderSettings).

Parse DTD’s are allowed, and if found, they are downloaded with the

XmlResolver in the reader and parsed as part of the document. An

by Kurt Evenepoel, 2010 13

error in the DTD, inability to find the DTD or a document not

adhering to the DTD will cause an exception to be thrown if

validation is enabled too.

Ignore DTD’s are allowed, but ignored. The DTD is not loaded. If the XML

document contains entities that were defined in the DTD (DTD’s do

more than only validation, they can define character entities for

example), the object can’t be successfully loaded and an exception

is thrown (default for XDocument, both in .NET 3.5 as .NET 4.0)

One thing to note is that XDocument.Load, when using the overload with an XmlReader,

uses the DTD settings of the XmlReader.

Method Result on DTD

XDocument.Load(string) Ignored

XmlReader, no XmlReaderSettings Prohibited

XmlReader

XmlReaderSettings.DtdProcessing=DtdProcessing.Parse

Parsed, not validated

XmlReader

XmlReaderSettings.DtdProcessing=DtdProcessing.Parse

XmlReaderSettings.ValidationType=ValidationType.DTD

Parsed and validated

So to allow XML documents to be validated according to their DTD, you need to set the

following settings:

using (XmlReader reader = XmlReader.Create("people. xml", new XmlReaderSettings
{
 DtdProcessing = DtdProcessing.Parse,
 ValidationType = ValidationType.DTD
}))
{
 XDocument.Load(reader);
}

There is still no reusablility mechanism for DTD’s like there is for schema’s however, so

every time a document is parsed the DTD is parsed and retrieved. And you can’t

validate an XML document easily with a DTD your program owns, you will need to re-

parse the document after adding it (careful with indenting!). This is in contrast to XML

schema’s- XML schema’s can be reused for parsing a set of documents.

Traditionally there was no caching mechanism present out of the box, and many people

wrote some kind of cache for their XmlResolvers. DTD’s are resolved with XmlResolvers

too, and .NET 4.0 allows you to set a caching policy on resolved streams now. So you

could resolve DTD’s with your XmlUrlResolver’s caching policy if the DTD is located on

a remote PC (ie if you have a high retrieval cost).

An example of how to do this:
using (XmlReader reader =
XmlReader.Create("http://www.microsoft.com/en/us/de fault.aspx", new
XmlReaderSettings
{

by Kurt Evenepoel, 2010 14

 DtdProcessing = DtdProcessing.Parse,
 ValidationType = ValidationType.DTD,
 XmlResolver = new XmlUrlResolver
 {
 CachePolicy = new
RequestCachePolicy(RequestCacheLevel.CacheIfAvailab le),
 }
}))
{
 XDocument.Load(reader);
}

If you run this, you’ll see exactly why DTD’s are generally resolved locally using a

resolver: the webpage that is supposed to host the DTD serves a ‘503 Page Unavailable’.

That means your HTML pages cannot be properly validated unless you have your own

copy of the DTD’s, because no document is complete without its DTD if it mentions it,

and if there’s entities inside you can’t even load it without it (for example).

Imagine every browser or HTML processor in the world retrieving the DTD every time a

HTML page is loaded- millions at the same time- what would that cost, and is there

even infrastructure capable of handling that?

Conclusion
Avoid adding DTD’s to your document whenever possible. Keep entities out of your

documents (easiest way is to use UTF-8) and if you need to validate you can use DTD or

schema at your convenience. But your program should decide what DTD or schema to

validate against. You don’t want to validate according to the document’s rules, but to

the rules your program is expecting: your program needs to dictate what it expects, it

couldn’t care less if the document thinks it’s valid. Validation serves a purpose, and the

purpose is not ‘making sure the document is valid according to its own standards’, wich

is what including a DTD inside of a document actually means.

An example of a worst case scenario:

A webservice processes files using a ‘customers.dtd’ file. It expects the files to be valid

XML files adhering to the customer DTD. A new programmer joined your team, sees the

folder and decides to put files adhering to the ‘sales.dtd’ document type inside the same

folder. They get processed. The webservice checks if the document is valid according to

the DTD mentioned in the document, in this case ‘sales.dtd’. It’s a valid document says

that DTD, so processing starts. But the service now crashes every 10minutes, trying to

get the oldest file from the folder, because the content is not what it expected. Had the

program validated according to the ‘customers’ dtd and not the DTD mentioned inside

of the document, things wouldve gone differently, and it would’ve been easy to log a

message and move the file.

Base URI’s and Streams, consequences for schemas

See included project: StreamsSchemaSet, EmbeddedResourceResolver

by Kurt Evenepoel, 2010 15

Streams don’t have the information that tells the reader what filename or uri it’s

handling. You just have a stream of data; where it came from, you have no way of

knowing. It could be one you got from a HTTP request, a memorystream, or one on

your local disk. A stream doesn’t know ‘where’ it is. But the ‘where’ is important in

some scenario’s. For example, the SchemaSet class determines duplicate Schemas by

their filename or URI. If you’re using streams, the schema can’t tell the schemaset

what its URI is.

Suppose we compile a schema set. We want to validate different types of documents

with it, and parts of the schema’s are re-used between formats.

Reading the XmlSchema’s first through a stream and then adding them to the

schemaset does not work properly:
XmlSchemaSet set = new XmlSchemaSet();
XmlSchema schema = new XmlSchema();
using (FileStream fs = new FileStream("sale.xsd", F ileMode.Open))
{
 // reading the schema with default settings res olves the included schemas
 // properly, and does not trigger duplicates wi thin the same root schema
 schema = XmlSchema.Read(fs, (o, e) => Console.W riteLine(e.Message));
}
set.Add(schema);
using (FileStream fs = new FileStream("client.xsd", FileMode.Open))
{
 // however, adding an already included child sc hema twice gives a conflict
 schema = XmlSchema.Read(fs, (o, e) => Console.W riteLine(e.Message));
}
set.Add(schema);
set.Compile();

What happens?

o The root schema, sale.xsd is loaded. The Schema does not have a base uri, because

its loaded via a stream.

o The included schema’s inside are resolved with an XmlUrlResolver per default, so

they DO have a filename known to the Schema

o A file we also want to use as root schema but that is already included via ‘sale.xsd’

cannot be added: the stream in the example does not know the location, and so

SchemaSet cannot determine it’s the same schema file as the one already loaded.

The result is an exception.

Instead, if we hand the SchemaSet a filename, included schemas are resolved as

before and all the schema’s know their location. The result is that the second root

schema isn’t loaded twice, and there is no exception because of the duplicate

declaration.

XmlSchemaSet set = new XmlSchemaSet();
XmlSchema schema = new XmlSchema();
// handing the SchemaSet filenames solves the probl em
set.Add(null, "sale.xsd");
set.Add(null, "client.xsd");
set.Compile();

by Kurt Evenepoel, 2010 16

This poses a problem if you wish to get your schema’s for example from embedded

resources, so normal users of your program will have difficulties changing the schema

your program uses to validate input with. Embedded resources only know streams, not

filenames, so you have to work around it. You need to schema to know a unique URI for

the stream, and the best way to do this is to use your own XmlResolver that resolves

filenames or URI’s to the embedded resources into streams, like this (you could it for

DTD’s too):

/// <summary>
/// Decorator class used to resolve xsd's from the embedded resources
/// Limited capabilities: use a type in the same fo lder (namespace) as the
resource
/// to locate, will ignore all folders etc., will j ust look for
/// the filename in the folder of the type T
/// </summary>
/// <typeparam name="T">Type to locate resources</t ypeparam>
public class EmbeddedResourceUrlResolver<T> : XmlRe solver
{
 private readonly XmlResolver _resolver;
 private readonly string[] _schemes;

 /// <summary>
 /// Decorating constructor
 /// </summary>
 /// <param name="resolver"></param>
 /// <param name="schemes">array of Uri.UriSchem e* constant entries</param>
 public EmbeddedResourceUrlResolver(XmlResolver resolver, params string[]
schemes)
 {
 if (resolver == null) throw new ArgumentNul lException("resolver");
 _resolver = resolver;
 _schemes = schemes;
 }

 /// <summary>
 /// Sets the credentials to use for resolving
 /// </summary>
 public override System.Net.ICredentials Credent ials
 {
 set { _resolver.Credentials = value; }
 }

 /// <summary>
 /// Gets the <see cref="Stream" /> referenced b y the uri
 /// </summary>
 /// <param name="absoluteUri"></param>
 /// <param name="role"></param>
 /// <param name="ofObjectToReturn"></param>
 /// <returns>a <see cref="Stream"/></returns>
 public override object GetEntity(Uri absoluteUr i, string role, Type
ofObjectToReturn)
 {
 if (_schemes.Contains(absoluteUri.Scheme))
 {
 string filename = Path.GetFileName(
 absoluteUri.ToString());
 Type locatorType = typeof(T);
 Stream stream = locatorType

by Kurt Evenepoel, 2010 17

 .Assembly
 .GetManifestResourceStream(locatorT ype, filename);
 if (stream == null)
 {
 try
 {
 stream = (Stream)_resolver.GetE ntity(absoluteUri, role,
ofObjectToReturn);
 }
 catch (MissingManifestResourceExcep tion missingException)
 {
 throw new MissingManifestResour ceException(
 string.Format(
 "Embedded resource {0} could not be resolved using
type {1}. Full request was: {2}.",
 filename, typeof (T), a bsoluteUri),
missingException);
 }
 catch (IOException exception)
 {
 throw new MissingManifestResour ceException(
 string.Format(
 "Embedded resource {0} could not be resolved using
type {1}. Full request was: {2}.",
 filename, typeof (T), a bsoluteUri), exception);
 }
 if (stream == null)
 {
 throw new MissingManifestResour ceException(
 string.Format("Embedded resourc e {0} could not be resolved
using type {1}. Full request was: {2}.",
 filename, typeof(T), absoluteUr i));
 }
 }
 return stream;

 }
 return _resolver.GetEntity(absoluteUri, rol e, ofObjectToReturn);

 }
}

You can then hand the EmbeddedResourceResolver a filename and type (which is used

to get the namespace), and embedded resources will be used (note that you could

rewrite it, to pass on requests it can’t find, onto the decorated resolver). Disabling the

resolver again would load them from file in the folder next to the application

executeable.

Here’s some example code how you can use this class:
XmlSchemaSet set = new XmlSchemaSet();
XmlSchema schema = new XmlSchema();
set.XmlResolver = new EmbeddedResourceUrlResolver<S chemaLocation>(new
XmlUrlResolver(), Uri.UriSchemeFile, Uri.UriSchemeH ttp);
set.Add(null, "sale.xsd");
set.Add(null, "client.xsd");
set.Compile();

by Kurt Evenepoel, 2010 18

These were my most common pitfalls. Now let’s look at what has changed in .NET 4.0

so you can take on migrating from .NET 3.5 to.NET 4.0 XML with confidence.

by Kurt Evenepoel, 2010 19

What went obsolete in .NET 4.0?
As mentioned before: no more ProbihitDtd with XmlReaders, and no more Evidence to

use in Xml Serialization, and no more XmlValidatingReader.

The following classes/methods/overloads have been made obsolete that I know of (in

bold):
 public class XmlConvert {
 public static String ToString(DateTime value);
 }

 public sealed class XmlReaderSettings {
 public Boolean ProhibitDtd { get; set; }
 }

 public class XmlTextReader : XmlReader, IXmlLin eInfo, IXmlNamespaceResolver
{
 public Boolean ProhibitDtd { get; set; }
 }

 public class XmlValidatingReader

 public class XmlSerializer {
 public XmlSerializer(Type type, XmlAttribut eOverrides overrides, Type[]
extraTypes, XmlRootAttribute root, String defaultNa mespace, String location,
Evidence evidence);

 public static XmlSerializer[] FromMappings(XmlMapping[] mappings,
Evidence evidence);
 }

 public class XmlSerializerFactory {
 public XmlSerializer CreateSerializer(Type type, XmlAttributeOverrides
overrides, Type[] extraTypes, XmlRootAttribute root , String defaultNamespace,
String location, Evidence evidence);
 }

by Kurt Evenepoel, 2010 20

Changes in System.XML and related namespaces

What changed in the System.XML namespace?

XmlConvert
ToString(datetime) has been made obsolete. A number of tests for characters and XML

strings have been added to the XmlConvert class:
 public class XmlConvert {
 [ObsoleteAttribute("Use XmlConvert.ToString () that takes in
XmlDateTimeSerializationMode")]
 public static String ToString(DateTime valu e);

 public static Boolean IsNCNameChar(Char ch) ;
 public static Boolean IsPublicIdChar(Char c h);
 public static Boolean IsStartNCNameChar(Cha r ch);
 public static Boolean IsWhitespaceChar(Char ch);
 public static Boolean IsXmlChar(Char ch);
 public static Boolean IsXmlSurrogatePair(Ch ar lowChar, Char highChar);
 public static String VerifyPublicId(String publicId);
 public static String VerifyWhitespace(Strin g content);
 public static String VerifyXmlChars(String content);
 }

IsNCNameChar: Checks whether the passed-in character is a valid non-colon character

type.

IsPublicIdChar: Returns the passed-in character instance if the character in the

argument is a valid public id character, otherwise Nothing.

IsStartNCNameChar: Checks if the passed-in character is a valid Start Name Character

type.

IsWhitespaceChar: Checks if the passed-in character is a valid XML whitespace

character.

IsXmlChar: Checks if the passed-in character is a valid XML character.

IsXmlSurrogatePair: Checks if the passed-in surrogate pair of characters is a valid XML

character.

VerifyPublicId: Returns the passed in string instance if all the characters in the string

argument are valid public id characters.

VerifyTOKEN: Verifies that the string is a valid token according to the W3C XML Schema

Part2: Datatypes recommendation.

VerifyWhitespace: Returns the passed-in string instance if all the characters in the string

argument are valid whitespace characters.

VerifyXmlChars: Returns the passed-in string if all the characters and surrogate pair

characters in the string argument are valid XML characters, otherwise Nothing.

XmlReader
HasValue went from abstract to virtual, so has received a default implementation
 public abstract class XmlReader : IDisposable {
 public (abstract) virtual Boolean HasValue { get; }
 }

by Kurt Evenepoel, 2010 21

XmlReader.Create now also have overloads to programmatically set the base uri for

streams or readers (anything that doesn’t have a base uri itself, like filenames or uri’s

do).

XmlReaderSettings
ProbititDtd has been replaced by DtdProcessing

This new setting also allows parsing documents that do have a DTD, but to ignore it

completely.

XmlResolver

See included project: NonStreamXmlResolver

This abstract class now has a SupportsType function
 public abstract class XmlResolver {
 public virtual Boolean SupportsType(Uri abs oluteUri, Type type);
 }

This new feature allows something else to be returned by an XmlResolver, like an

XDocument. The following is an example of a class that does just that:
public class XDocumentUrlResolver: XmlResolver
 {
 XmlResolver _resolver;
 public XDocumentUrlResolver(XmlResolver wra ppedResolver)
 {
 _resolver = wrappedResolver;
 }

 public override System.Net.ICredentials Cre dentials
 {
 set { _resolver.Credentials = value; }
 }

 public override bool SupportsType(Uri absol uteUri, Type type)
 {
 if (type == typeof(XDocument)) return t rue;
 if (_resolver != null) return _resolver .SupportsType(absoluteUri,
type);
 return false;
 }
 public override object GetEntity(Uri absolu teUri, string role, Type
ofObjectToReturn)
 {
 if (_resolver != null && ofObjectToRetu rn == typeof(XDocument))
 {
 XDocument doc =
XDocument.Load((Stream)_resolver.GetEntity(absolute Uri, role, typeof(Stream)),
LoadOptions.PreserveWhitespace);
 return doc;
 }
 if (_resolver != null) return _resolver .GetEntity(absoluteUri,
role, ofObjectToReturn);
 throw new NotSupportedException("Can't resolve without an
underlying resolver");
 }
 }

by Kurt Evenepoel, 2010 22

Ofcourse, the use of this new ability is limited: XmlReaders won’t suddenly return

XDocuments, it just means you can build your own frameworks with similar resolver

mechanics and have more re-use out of resolver classes.

XmlTextReader
ProhibitDtd was replaced by DtdProcessing to make it consistent with

XmlReaderSettings.
 public class XmlTextReader : XmlReader, IXmlLin eInfo, IXmlNamespaceResolver
{
 [ObsoleteAttribute("Use DtdProcessing prope rty instead.")]
 public Boolean ProhibitDtd { get; set; }

 public DtdProcessing DtdProcessing { get; s et; }
 }

XmlUrlResolver

See included project: CachePolicy

XmlUrlResolver now has write-only properties for cache policy and proxy
 public class XmlUrlResolver : XmlResolver {
 public RequestCachePolicy CachePolicy { set ; }
 public IWebProxy Proxy { set; }
 }

Note that this is for XmlUrlResolver, and not XmlResolver. One is a concrete

implementation, the other the abstract base class for it. Inheriting from XmlResolver

will not get you a CachePolicy or a proxy.

For more information on XmlUrlResolver see:

http://msdn.microsoft.com/enus/library/system.xml.xmlurlresolver.aspx.

You can set the proxy and cache policy as shown below:
WebProxy proxy = new WebProxy("http://localhost:8080");
RequestCachePolicy policy = new
RequestCachePolicy(RequestCacheLevel.BypassCache);
XmlUrlResolver resolver = new XmlUrlResolver();
resolver.Proxy = proxy;
resolver.CachePolicy = policy;
using (XmlReader reader = XmlReader.Create("people. xml", new XmlReaderSettings
{
 XmlResolver = resolver
}))
{
 XDocument.Load(reader);
}

XmlValidatingReader
This class was rendered obsolete, making it consistent with the other XmlReaders. Use

XmlReader.Create now like you would for every other XmlReader class (no more need to

know the concrete implementation).
 [ObsoleteAttribute("Use XmlReader created by Xm lReader.Create() method
using appropriate XmlReaderSettings instead.
http://go.microsoft.com/fwlink/?linkid=14202")]

by Kurt Evenepoel, 2010 23

 public class XmlValidatingReader : XmlReader, I XmlLineInfo,
IXmlNamespaceResolver {
 public override XmlReaderSettings Settings { get; }
 }

XmlWriterSettings
Now supports setting namespace handling mode; this was dicussed before.
 public sealed class XmlWriterSettings {
 public NamespaceHandling NamespaceHandling { get; set; }
 }

DtdProcessing and NamespaceHandling
Were discussed above

What changed in the System.Xml.Serialization namesp ace?

XmlSerializer, XmlSerializerFactory
All constructors and ways to create serializers taking Evidence as a parameter have been

made obsolete, and replaced by a new one without this parameter.
 public class XmlSerializer {
 public XmlSerializer(Type type, XmlAttribut eOverrides overrides, Type[]
extraTypes, XmlRootAttribute root, String defaultNa mespace, String location,
Evidence evidence);

 public static XmlSerializer[] FromMappings(XmlMapping[] mappings,
Evidence evidence);

 public XmlSerializer(Type type, XmlAttributeOverrid es overrides, Type[]
extraTypes, XmlRootAttribute root, String defaultNa mespace, String location);
 }

 public class XmlSerializerFactory {
 public XmlSerializer CreateSerializer(Type type, Xm lAttributeOverrides
overrides, Type[] extraTypes, XmlRootAttribute root , String defaultNamespace,
String location, Evidence evidence);

 public XmlSerializer CreateSerializer(Type type, Xm lAttributeOverrides
overrides, Type[] extraTypes, XmlRootAttribute root , String defaultNamespace,
String location);
 }

What changed in the System.Xml.Xsl namespace?

XslCompiledTransform
A new overload for Transform was added:
 public sealed class XslCompiledTransform {
 public void Transform(IXPathNavigable input , XsltArgumentList
arguments, XmlWriter results, XmlResolver documentR esolver);
 }

by Kurt Evenepoel, 2010 24

What changed in the System.Xml.Linq namespace

SaveOptions
SaveOptions now allows to specify to remove or keep duplicate namespaces.

SaveOptions can be used as bitwise flags and use the |-operator
 [FlagsAttribute]
 public enum SaveOptions {
 OmitDuplicateNamespaces
 }

This is rougly the same as the NamespaceHandling enum in System.XML, but for

System.XML.Linq and for writing documents only.

XDocument, XElement and XStreamingElement

See included project: XElementVsXStreamingElement

Overloads have been added for loading from and saving to streams.
 public class XDocument : XContainer {
 public static XDocument Load(Stream stream, LoadOptions options);
 public static XDocument Load(Stream stream);
 public void Save(Stream stream);
 public void Save(Stream stream, SaveOptions options);
 }

 public class XElement : XContainer, IXmlSeriali zable {
 public static XElement Load(Stream stream, LoadOptions options);
 public static XElement Load(Stream stream);
 public void Save(Stream stream);
 public void Save(Stream stream, SaveOptions options);
 }

 public class XStreamingElement {
 public void Save(Stream stream);
 public void Save(Stream stream, SaveOptions options);
 }

These overloads use UTF-8 readers and writers.

We’ll show an example using streams and an XStreamingElement. XStreamingElements

are like normal Xelements, but with one distinction: the contents are lazy-evaluated.

That means that the LINQ query or IEnumerable inside is only calculated and processed

when the value of the element itself is requested (note that this already happens when

you add it to an XElement or XDocument!). This is especially handy for keeping your

memory footprint low, or preparing a large XML file and then turning out not to need it,

or only need it in part. More information can be found at

http://msdn.microsoft.com/en-us/library/system.xml.linq.xstreamingelement.aspx, but

right now let’s see it in practise.

We’ll use a small helper function to write out when the LINQ query is enumerated:
private static XElement CreateLineElement(string li ne)
{
 Debug.WriteLine(line);
 return new XElement("line", line);

by Kurt Evenepoel, 2010 25

}

The following code creates an XElement based on LINQ.
string path = "line_input.txt";
Debug.WriteLine("start");
// the constructor of XElement enumerates
// the IEnumerable
XElement elem = new XElement("root",
 from line in ReadNextLine(path)
 select CreateLineElement(line));

Debug.WriteLine("after creation of XElement");
XDocument doc = new XDocument(elem);
Debug.WriteLine("after adding XElement to XDocument ");

The output shows that XElement enumerates the LINQ query in its constructor:
start
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Etiam lorem velit, elementum a pellentesque nec, ph aretra in ipsum.
Ut libero lorem, ultricies in auctor elementum, ves tibulum sed lacus.
Mauris consectetur quam sit amet libero pretium ut dapibus libero ornare.
after creation of XElement
after adding XElement to XDocument

Next’ we’ll try the same, but with XStreamingElement:
string path = "line_input.txt";
Debug.WriteLine("start");
// the constructor of XStreamingElement does
// not enumerate the IEnumerable yet
XStreamingElement elem = new XStreamingElement("roo t",
 from line in ReadNextLine(path)
 select CreateLineElement(line));

Debug.WriteLine("after creation of XStreamingElemen t");

// XStreamingElement is enumerated when it is added
// to a non-streaming element or document
XDocument doc = new XDocument(elem);
Debug.WriteLine("after adding XStreamingElement to XDocument");

This yields the following output:
start
after creation of XStreamingElement
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Etiam lorem velit, elementum a pellentesque nec, ph aretra in ipsum.
Ut libero lorem, ultricies in auctor elementum, ves tibulum sed lacus.
Mauris consectetur quam sit amet libero pretium ut dapibus libero ornare.
after adding XStreamingElement to XDocument

This shows that the XStreamingElement’s constructor does not enumerate the

IEnumerable, but once it’s added to an XDocument (or XElement) it will be enumerated.

Saving the XDocument then yields an UTF-8 XML document
MemoryStream memStream = new MemoryStream();
doc.Save(memStream, SaveOptions.DisableFormatting);

Conclusion:

by Kurt Evenepoel, 2010 26

o An XStreamingElement only generates its contents when the contents are requested

(eg, if you need database access, keep the database open while its contents are not

requested..)

o An XElement generates its contents at the constructor

o Adding an XStreamingElement to an XDocument or XElement generates its

contents, so placing an XDocument full of XStreamingElements in case they won’t be

needed is pointless, they will get calculated at the documents constructor anyway.

o Streams overloads use UTF-8 encoding

XNode
A new overload to create a reader from an XNode, so it will also work with any derived

class (eg XElement).
 public abstract class XNode : XObject, IXmlLine Info {
 public XmlReader CreateReader(ReaderOptions readerOptions);
 }

by Kurt Evenepoel, 2010 27

Conclusion
Your .NET 3.5 XML code should still be compatible with the new .NET 4.0. There are

new ways for handling DTD’s, and it’s good DTD’s finally got some extra lovin’ (the

obsolete property will break builds if you treat warnings as errors however). Duplicate

namespaces can now be handled gracefully. More XML readers are deprecated and

now require the use of XmlReader.Create, but this was a general guideline since .NET

2.0 already. Some pitfalls still remain, making working with XML sometimes harder and

more error-prone than it should be. The difference between XDocument with or

without XmlReaders/Writers comes to mind, the same goes for XmlDocument.

Documentation for, for example, XStreamingElement is still pretty basic.

I hope you enjoyed the read, and if you have questions or comments bring them on!

Oh, and thanks for reading all my ramblings (you made it to the end!)

1
 A few examples:

http://www.oracle.com/technology/pub/articles/wang-whitespace.html

http://www.ibm.com/developerworks/xml/library/x-diff/index.html
2
 Altova XML Spy does not adhere to this, but .NET 3.5 and .NET 4.0 default settings for

XslCompiledTransform do – XslCompiledTransform is the class that’s used to do XSL Transformations in

.NET

