13,557,915 members
See more:
I have some code in Matlab which need to be converted to vb or c# but I didn't have any experience on matlab. So if anyone can do this, please help me.

This is the code in matlab:
```case ('BCC')
switch orientation;
% Input oriented;
case ('io')
Z = zeros(n,n+m+s+1);

% Objective function of the BCC model: min(0*lambda - epsilon*(s+ + s-) + theta);
f = [zeros(1,n) -epsilon*ones(1,s+m) 1];

lblambda = zeros(n,1);                % Lower bounds for (n) lambdas;
lboutput = zeros(s,1);                % Lower bounds for (s) outputs;
lbinput = zeros(m,1);                 % Lower bounds for (m) inputs ;
lb = [lblambda; lboutput; lbinput];   % Lower bounds for lambdas, outputs (s+) and inputs (s-);
for j=1:n
Aeq = [Y', -eye(s,s), zeros(s,m+1);
-X', zeros(m,s), -eye(m,m) X(j,:)';
ones(1,n), zeros(1,s), zeros(1,m+1)];
beq = [Y(j,:)';zeros(m,1);1];
z = linprog(f,[],[],Aeq,beq,lb);
Z(j,:) = z;
end
Z

% Output oriented;
case ('oo')
Z = zeros(n,n+m+s+1);

% Objective function of the BCC_oo model: max(0*lambda + epsilon*(s+ + s-) + theta);
f = -[zeros(1,n), epsilon*ones(1,s+m), 1];

lblambda = zeros(n,1);                % Lower bounds for (n) lambdas;
lboutput = zeros(s,1);                % Lower bounds for (s) outputs;
lbinput = zeros(m,1);                 % Lower bounds for (m) inputs ;
lb = [lblambda; lboutput; lbinput];   % Lower bounds for lambdas, outputs (s+) and inputs (s-);
for j=1:n
Aeq = [-Y', eye(s,s), zeros(s,m), Y(j,:)';
X', zeros(m,s), eye(m,m), zeros(m,1);
ones(1,n), zeros(1,s+m+1)];
beq = [zeros(s,1);X(j,:)';1];
z = linprog(f,[],[],Aeq,beq,lb);
Z(j,:) = z;
end
Z

end```

Thanks for help!
Posted 22-Nov-10 5:08am

## Solution 2

```function [bank]=loadthem(filename)

for (i=1:4)
end```

## Solution 1

Nobody is going to write your code for you. If you want to hire someone, go over to RentACoder.com. Warning! You get what you pay for.

If you want to LEARN to write your own code, start by learning the language.
jack_th 23-Nov-10 2:36am

Oh! Thank you. I 'll try by myselft first.

## Solution 3

for (i=1:4)
end

Top Experts
Last 24hrsThis month
 OriginalGriff 240 Jochen Arndt 215 CPallini 115 ppolymorphe 95 Richard MacCutchan 65
 OriginalGriff 6,094 ppolymorphe 2,587 Richard MacCutchan 2,467 Maciej Los 2,025 Wendelius 1,905