13,707,665 members
Alternatives
alternative version

#### Stats

31.1K views
3 bookmarked
Posted 10 Jun 2010
Licenced CPOL

# A simple program to solve quadratic equations with

, 8 Nov 2010
Simple and prints imaginary roots too!float a,b,c,x1,x2,d,dsq;printf("ax^2 + bx + c = 0");printf("\nEnter a,b,c separated by commas : \n");scanf("%f,%f,%f",&a,&b,&c);d = b*b-(4*a*c);if(d>=0){dsq=sqrt(d);x1 = (-b+dsq)/(2*a);x2 = (-b-(dsq))/(2*a);printf("\nRoot 1 : %f\nRoot 2...

## Alternatives

Members may post updates or alternatives to this current article in order to show different approaches or add new features.

16 Nov 2010
I prefer this :) #include #include #include #include static const double bad_double = std::numeric_limits::quiet_NaN();class QuadSolver{ static bool IsZero(double val) { return (val == 0) || (fabs(val) <...
9 Nov 2010
// Real solutions of the quadratic equation A x^2 + B x + C = 0// Returns two roots (possibly identical) in increasing order, or nonebool Quadratic(double A, double B, double C, double R[2]){ if (A == 0) { // Linear, impossible or degenerate, cannot find two roots ...
10 Nov 2010
The correct way to solve quadratic equations is none of the above. For the correct algorithm as applied in the following function, seenumerical recipes in C and the Wolfram site at http://mathworld.wolfram.com/QuadraticEquation.html#include bool quadratic(double a, double b,...
20 May 2010
#include #include #include "Raiz_Cuadratica.h"int main(){ // float xx = 1; float x = 1; float i = -12; RaizCuadratica *lala = new RaizCuadratica( xx, x, i ); RaizCuadratica::sRaiz raiz = lala->GetRaiz(); printf( "x1 = %f || x2 = %f\n\n",...
11 Nov 2010
A simple program to calculate quadratic equation with.Input MUST have the format:AX2 + BX + C = 0EXAMPLE: input the equation 2X2 + 4X -30 = 0 as:A= 2 B= 4 C= -30The answers for AX2 + BX + C = 0 should be 3 and -5.x1=3x2=-5 bool solver(float...
7 Nov 2010
#include<stdio...
15 Nov 2010
I am reposting this because I accidentally deleted my first post.The solution is presented as a pair of complex roots, unless a == 0, in which case the equation is linear and returns a single complex(real) root.If a == 0 and b == 0, the function fails.Given a complex type, replace...