Click here to Skip to main content
15,886,199 members
Articles / Desktop Programming / MFC

Tree Container Library

Rate me:
Please Sign up or sign in to vote.
4.85/5 (29 votes)
22 Aug 2007Zlib10 min read 228.5K   7.2K   111  
A generic template class library for storing data in a tree-like structure.
/*******************************************************************************
Tree Container Library: Generic container library to store data in tree-like structures.
Copyright (c) 2006  Mitchel Haas

This software is provided 'as-is', without any express or implied warranty. 
In no event will the author be held liable for any damages arising from 
the use of this software.

Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1.	The origin of this software must not be misrepresented; 
you must not claim that you wrote the original software. 
If you use this software in a product, an acknowledgment in the product 
documentation would be appreciated but is not required.

2.	Altered source versions must be plainly marked as such, 
and must not be misrepresented as being the original software.

3.	The above copyright notice and this permission notice may not be removed 
or altered from any source distribution.

Email questions, comments or suggestions to mhaas@datasoftsolutions.net
*******************************************************************************/
#pragma once
#include "associative_tree.h"
#include "ordered_iterator.h"
#include <set>

// deref less for ordered children set
template<typename tree_type, typename node_order_compare_type>
struct deref_ordered_compare
{
	bool operator() (const tree_type* lhs, const tree_type* rhs) const { return node_order_compare_type() (*lhs->get(), *rhs->get()); }
};

// forward declaration for deref comparison functor
template<typename stored_type, typename node_compare_type, typename node_order_compare_type >
class unique_tree;

// deref comparison functor, derive from binary function per Scott Meyer
template<typename stored_type, typename node_compare_type, typename node_order_compare_type >
struct unique_tree_deref_less : public std::binary_function<const unique_tree<stored_type, node_compare_type, node_order_compare_type>*, const unique_tree<stored_type, node_compare_type, node_order_compare_type>*, bool>
{
	bool operator () (const unique_tree<stored_type, node_compare_type, node_order_compare_type>* lhs, const unique_tree<stored_type, node_compare_type, node_order_compare_type>* rhs) const
	{
		// call < on actual object
		return (*lhs->get() < *rhs->get());
	}
};


// instanciates base_tree_type with type of container (set of unique_tree ptrs) to use for node and key comparisons
template<typename stored_type, typename node_compare_type = std::less<stored_type>, typename node_order_compare_type = node_compare_type >
class unique_tree : public associative_tree<stored_type, unique_tree<stored_type, node_compare_type, node_order_compare_type>,  std::set<unique_tree<stored_type, node_compare_type, node_order_compare_type>*, unique_tree_deref_less<stored_type, node_compare_type, node_order_compare_type> > >
{
	public:
	// typedefs
		typedef unique_tree<stored_type, node_compare_type, node_order_compare_type> tree_type;
		typedef unique_tree_deref_less<stored_type, node_compare_type, node_order_compare_type> key_compare;
		typedef unique_tree_deref_less<stored_type, node_compare_type, node_order_compare_type> value_compare;
		typedef basic_tree<stored_type, unique_tree<stored_type, node_compare_type, node_order_compare_type>,  std::set<unique_tree<stored_type, node_compare_type, node_order_compare_type>*, unique_tree_deref_less<stored_type, node_compare_type, node_order_compare_type> > > basic_tree_type;
		typedef associative_tree<stored_type, unique_tree<stored_type, node_compare_type, node_order_compare_type>,  std::set<unique_tree<stored_type, node_compare_type, node_order_compare_type>*, unique_tree_deref_less<stored_type, node_compare_type, node_order_compare_type> > > associative_tree_type;
		typedef std::set<unique_tree<stored_type, node_compare_type, node_order_compare_type>*, unique_tree_deref_less<stored_type, node_compare_type, node_order_compare_type> > container_type;
		friend class basic_tree<stored_type, unique_tree<stored_type, node_compare_type, node_order_compare_type>,  std::set<unique_tree<stored_type, node_compare_type, node_order_compare_type>*, unique_tree_deref_less<stored_type, node_compare_type, node_order_compare_type> > >;

		typedef unique_tree_deref_less<stored_type, node_compare_type, node_order_compare_type> deref_key_compare;
		typedef const_unique_tree_ordered_iterator<stored_type, node_compare_type, node_order_compare_type> const_ordered_iterator;
		typedef unique_tree_ordered_iterator<stored_type, node_compare_type, node_order_compare_type> ordered_iterator;

		// needed for inl function definitions in VC8
		typedef typename associative_tree_type::iterator child_iterator;
		typedef typename associative_tree_type::const_iterator const_child_iterator;

	// constructors/destructor
		unique_tree() : associative_tree_type(), pOrphans(0), allowing_orphans(false)  {}
		explicit unique_tree( const stored_type& element ) : associative_tree_type(element), pOrphans(0), allowing_orphans(false) {}
		unique_tree( const tree_type& rhs ); // copy constructor
		template<typename iterator_type> unique_tree(iterator_type it_beg, iterator_type it_end) : associative_tree_type(), pOrphans(0), allowing_orphans(false) { while (it_beg != it_end) insert(*it_beg++); }
		~unique_tree() { clear(); if ( pOrphans ) basic_tree_type::deallocate_tree_type(pOrphans); }

	// public interface
	public:
		tree_type& operator = (const tree_type& rhs);  // assignment operator
		typename associative_tree_type::iterator insert(const stored_type& element);
		typename associative_tree_type::iterator insert(const typename associative_tree_type::const_iterator pos, const stored_type& element) { return associative_tree_type::insert(pos, element, this); }
		typename associative_tree_type::iterator insert(const tree_type& tree_obj );
		typename associative_tree_type::iterator insert(const typename associative_tree_type::const_iterator pos, const tree_type& tree_obj) { return associative_tree_type::insert(pos, tree_obj, this); }
		void swap(tree_type& rhs);

		typename associative_tree_type::iterator insert( const stored_type& parent_obj, const stored_type& element);
		template<typename iterator_type> void insert(iterator_type it_beg, iterator_type it_end) { while ( it_beg != it_end ) insert(*it_beg++); }

		typename associative_tree_type::iterator find_deep(const stored_type& element);
		typename associative_tree_type::const_iterator find_deep(const stored_type& element) const;

		const_ordered_iterator ordered_begin() const { return const_ordered_iterator(ordered_children.begin()); }
		const_ordered_iterator ordered_end() const { return const_ordered_iterator(ordered_children.end()); }
		ordered_iterator ordered_begin() { return ordered_iterator(ordered_children.begin()); }
		ordered_iterator ordered_end() { return ordered_iterator(ordered_children.end()); }
		ordered_iterator find_ordered(const stored_type& element);
		const_ordered_iterator find_ordered(const stored_type& element) const;
		bool erase(const stored_type& element);
		void erase(typename associative_tree_type::iterator it);
		void erase(typename associative_tree_type::iterator it_beg, typename associative_tree_type::iterator it_end);
		void clear();
		bool allow_orphans() const { return get_root()->allowing_orphans; }
		void allow_orphans(const bool allow) { get_root()->allowing_orphans = allow; }
		const tree_type* get_orphans() const { return get_root()->pOrphans; }
		bool is_orphan() const { const tree_type* const root = get_root(); return (!root->empty() && root->ordered_children.empty()); }

	private:
		void set(const stored_type& element) { basic_tree_type::set(element); }
		void set(const tree_type& tree_obj);
		void inform_grandparents( tree_type* pNew_child, tree_type* pParent );
		bool check_for_duplicate(const stored_type& element, const tree_type* pParent) const;
		const tree_type* get_root() const;

	// data
	private:
		mutable std::set<tree_type*, deref_key_compare > descendents;
		std::multiset<tree_type*, deref_ordered_compare<tree_type, node_order_compare_type> > ordered_children;
		mutable tree_type* pOrphans;
		mutable bool allowing_orphans;
};

#include "unique_tree.inl"

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The zlib/libpng License



Comments and Discussions