Click here to Skip to main content
15,896,730 members
Articles / Mobile Apps / Android

Android ImageView and Drawable with SVG Support

Rate me:
Please Sign up or sign in to vote.
4.75/5 (11 votes)
14 Dec 2010CPOL3 min read 155.6K   5.7K   33  
This article introduces custom classes SvgImageView and SvgDrawable which allow to use SVG image just like any other image.
//----------------------------------------------------------------------------
// Anti-Grain Geometry (AGG) - Version 2.5
// A high quality rendering engine for C++
// Copyright (C) 2002-2006 Maxim Shemanarev
// Contact: mcseem@antigrain.com
//          mcseemagg@yahoo.com
//          http://antigrain.com
// 
// AGG is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
// 
// AGG is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
// 
// You should have received a copy of the GNU General Public License
// along with AGG; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, 
// MA 02110-1301, USA.
//----------------------------------------------------------------------------
//
// Adaptation for 32-bit screen coordinates has been sponsored by 
// Liberty Technology Systems, Inc., visit http://lib-sys.com
//
// Liberty Technology Systems, Inc. is the provider of
// PostScript and PDF technology for software developers.
// 
//----------------------------------------------------------------------------

#ifndef AGG_SCANLINE_STORAGE_AA_INCLUDED
#define AGG_SCANLINE_STORAGE_AA_INCLUDED

#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "agg_array.h"


namespace agg
{

    //----------------------------------------------scanline_cell_storage
    template<class T> class scanline_cell_storage
    {
        struct extra_span
        {
            unsigned len;
            T*       ptr;
        };

    public:
        typedef T value_type;

        //---------------------------------------------------------------
        ~scanline_cell_storage()
        {
            remove_all();
        }

        //---------------------------------------------------------------
        scanline_cell_storage() :
            m_cells(128-2),
            m_extra_storage()
        {}


        // Copying
        //---------------------------------------------------------------
        scanline_cell_storage(const scanline_cell_storage<T>& v) :
            m_cells(v.m_cells),
            m_extra_storage()
        {
            copy_extra_storage(v);
        }

        //---------------------------------------------------------------
        const scanline_cell_storage<T>& 
        operator = (const scanline_cell_storage<T>& v)
        {
            remove_all();
            m_cells = v.m_cells;
            copy_extra_storage(v);
            return *this;
        }

        //---------------------------------------------------------------
        void remove_all()
        {
            int i;
            for(i = m_extra_storage.size()-1; i >= 0; --i)
            {
                pod_allocator<T>::deallocate(m_extra_storage[i].ptr,
                                             m_extra_storage[i].len);
            }
            m_extra_storage.remove_all();
            m_cells.remove_all();
        }

        //---------------------------------------------------------------
        int add_cells(const T* cells, unsigned num_cells)
        {
            int idx = m_cells.allocate_continuous_block(num_cells);
            if(idx >= 0)
            {
                T* ptr = &m_cells[idx];
                memcpy(ptr, cells, sizeof(T) * num_cells);
                return idx;
            }
            extra_span s;
            s.len = num_cells;
            s.ptr = pod_allocator<T>::allocate(num_cells);
            memcpy(s.ptr, cells, sizeof(T) * num_cells);
            m_extra_storage.add(s);
            return -int(m_extra_storage.size());
        }

        //---------------------------------------------------------------
        const T* operator [] (int idx) const
        {
            if(idx >= 0)
            {
                if((unsigned)idx >= m_cells.size()) return 0;
                return &m_cells[(unsigned)idx];
            }
            unsigned i = unsigned(-idx - 1);
            if(i >= m_extra_storage.size()) return 0;
            return m_extra_storage[i].ptr;
        }

        //---------------------------------------------------------------
        T* operator [] (int idx)
        {
            if(idx >= 0)
            {
                if((unsigned)idx >= m_cells.size()) return 0;
                return &m_cells[(unsigned)idx];
            }
            unsigned i = unsigned(-idx - 1);
            if(i >= m_extra_storage.size()) return 0;
            return m_extra_storage[i].ptr;
        }

    private:
        void copy_extra_storage(const scanline_cell_storage<T>& v)
        {
            unsigned i;
            for(i = 0; i < v.m_extra_storage.size(); ++i)
            {
                const extra_span& src = v.m_extra_storage[i];
                extra_span dst;
                dst.len = src.len;
                dst.ptr = pod_allocator<T>::allocate(dst.len);
                memcpy(dst.ptr, src.ptr, dst.len * sizeof(T));
                m_extra_storage.add(dst);
            }
        }

        pod_bvector<T, 12>         m_cells;
        pod_bvector<extra_span, 6> m_extra_storage;
    };






    //-----------------------------------------------scanline_storage_aa
    template<class T> class scanline_storage_aa
    {
    public:
        typedef T cover_type;

        //---------------------------------------------------------------
        struct span_data
        {
            int32 x;
            int32 len;       // If negative, it's a solid span, covers is valid
            int   covers_id; // The index of the cells in the scanline_cell_storage
        };

        //---------------------------------------------------------------
        struct scanline_data
        {
            int      y;
            unsigned num_spans;
            unsigned start_span;
        };


        //---------------------------------------------------------------
        class embedded_scanline
        {
        public:

            //-----------------------------------------------------------
            class const_iterator
            {
            public:
                struct span
                {
                    int32    x;
                    int32    len; // If negative, it's a solid span, covers is valid
                    const T* covers;
                };

                const_iterator() : m_storage(0) {}
                const_iterator(const embedded_scanline& sl) :
                    m_storage(sl.m_storage),
                    m_span_idx(sl.m_scanline.start_span)
                {
                    init_span();
                }

                const span& operator*()  const { return m_span;  }
                const span* operator->() const { return &m_span; }

                void operator ++ ()
                {
                    ++m_span_idx;
                    init_span();
                }

            private:
                void init_span()
                {
                    const span_data& s = m_storage->span_by_index(m_span_idx);
                    m_span.x      = s.x;
                    m_span.len    = s.len;
                    m_span.covers = m_storage->covers_by_index(s.covers_id);
                }

                const scanline_storage_aa* m_storage;
                unsigned                   m_span_idx;
                span                       m_span;
            };

            friend class const_iterator;


            //-----------------------------------------------------------
            embedded_scanline(const scanline_storage_aa& storage) :
                m_storage(&storage)
            {
                init(0);
            }

            //-----------------------------------------------------------
            void     reset(int, int)     {}
            unsigned num_spans()   const { return m_scanline.num_spans;  }
            int      y()           const { return m_scanline.y;          }
            const_iterator begin() const { return const_iterator(*this); }

            //-----------------------------------------------------------
            void init(unsigned scanline_idx)
            {
                m_scanline_idx = scanline_idx;
                m_scanline = m_storage->scanline_by_index(m_scanline_idx);
            }

        private:
            const scanline_storage_aa* m_storage;
            scanline_data              m_scanline;
            unsigned                   m_scanline_idx;
        };


        //---------------------------------------------------------------
        scanline_storage_aa() :
            m_covers(),
            m_spans(256-2),         // Block increment size
            m_scanlines(),
            m_min_x( 0x7FFFFFFF),
            m_min_y( 0x7FFFFFFF),
            m_max_x(-0x7FFFFFFF),
            m_max_y(-0x7FFFFFFF),
            m_cur_scanline(0)
        {
            m_fake_scanline.y = 0;
            m_fake_scanline.num_spans = 0;
            m_fake_scanline.start_span = 0;
            m_fake_span.x = 0;
            m_fake_span.len = 0;
            m_fake_span.covers_id = 0;
        }

        // Renderer Interface
        //---------------------------------------------------------------
        void prepare()
        {
            m_covers.remove_all();
            m_scanlines.remove_all();
            m_spans.remove_all();
            m_min_x =  0x7FFFFFFF;
            m_min_y =  0x7FFFFFFF;
            m_max_x = -0x7FFFFFFF;
            m_max_y = -0x7FFFFFFF;
            m_cur_scanline = 0;
        }

        //---------------------------------------------------------------
        template<class Scanline> void render(const Scanline& sl)
        {
            scanline_data sl_this;

            int y = sl.y();
            if(y < m_min_y) m_min_y = y;
            if(y > m_max_y) m_max_y = y;

            sl_this.y = y;
            sl_this.num_spans = sl.num_spans();
            sl_this.start_span = m_spans.size();
            typename Scanline::const_iterator span_iterator = sl.begin();

            unsigned num_spans = sl_this.num_spans;
            for(;;)
            {
                span_data sp;

                sp.x         = span_iterator->x;
                sp.len       = span_iterator->len;
                int len      = abs(int(sp.len));
                sp.covers_id = 
                    m_covers.add_cells(span_iterator->covers, 
                                       unsigned(len));
                m_spans.add(sp);
                int x1 = sp.x;
                int x2 = sp.x + len - 1;
                if(x1 < m_min_x) m_min_x = x1;
                if(x2 > m_max_x) m_max_x = x2;
                if(--num_spans == 0) break;
                ++span_iterator;
            }
            m_scanlines.add(sl_this);
        }


        //---------------------------------------------------------------
        // Iterate scanlines interface
        int min_x() const { return m_min_x; }
        int min_y() const { return m_min_y; }
        int max_x() const { return m_max_x; }
        int max_y() const { return m_max_y; }

        //---------------------------------------------------------------
        bool rewind_scanlines()
        {
            m_cur_scanline = 0;
            return m_scanlines.size() > 0;
        }


        //---------------------------------------------------------------
        template<class Scanline> bool sweep_scanline(Scanline& sl)
        {
            sl.reset_spans();
            for(;;)
            {
                if(m_cur_scanline >= m_scanlines.size()) return false;
                const scanline_data& sl_this = m_scanlines[m_cur_scanline];

                unsigned num_spans = sl_this.num_spans;
                unsigned span_idx  = sl_this.start_span;
                do
                {
                    const span_data& sp = m_spans[span_idx++];
                    const T* covers = covers_by_index(sp.covers_id);
                    if(sp.len < 0)
                    {
                        sl.add_span(sp.x, unsigned(-sp.len), *covers);
                    }
                    else
                    {
                        sl.add_cells(sp.x, sp.len, covers);
                    }
                }
                while(--num_spans);
                ++m_cur_scanline;
                if(sl.num_spans())
                {
                    sl.finalize(sl_this.y);
                    break;
                }
            }
            return true;
        }


        //---------------------------------------------------------------
        // Specialization for embedded_scanline
        bool sweep_scanline(embedded_scanline& sl)
        {
            do
            {
                if(m_cur_scanline >= m_scanlines.size()) return false;
                sl.init(m_cur_scanline);
                ++m_cur_scanline;
            }
            while(sl.num_spans() == 0);
            return true;
        }

        //---------------------------------------------------------------
        unsigned byte_size() const
        {
            unsigned i;
            unsigned size = sizeof(int32) * 4; // min_x, min_y, max_x, max_y

            for(i = 0; i < m_scanlines.size(); ++i)
            {
                size += sizeof(int32) * 3; // scanline size in bytes, Y, num_spans

                const scanline_data& sl_this = m_scanlines[i];

                unsigned num_spans = sl_this.num_spans;
                unsigned span_idx  = sl_this.start_span;
                do
                {
                    const span_data& sp = m_spans[span_idx++];

                    size += sizeof(int32) * 2;                // X, span_len
                    if(sp.len < 0)
                    {
                        size += sizeof(T);                    // cover
                    }
                    else
                    {
                        size += sizeof(T) * unsigned(sp.len); // covers
                    }
                }
                while(--num_spans);
            }
            return size;
        }


        //---------------------------------------------------------------
        static void write_int32(int8u* dst, int32 val)
        {
            dst[0] = ((const int8u*)&val)[0];
            dst[1] = ((const int8u*)&val)[1];
            dst[2] = ((const int8u*)&val)[2];
            dst[3] = ((const int8u*)&val)[3];
        }


        //---------------------------------------------------------------
        void serialize(int8u* data) const
        {
            unsigned i;

            write_int32(data, min_x()); // min_x
            data += sizeof(int32);
            write_int32(data, min_y()); // min_y
            data += sizeof(int32);
            write_int32(data, max_x()); // max_x
            data += sizeof(int32);
            write_int32(data, max_y()); // max_y
            data += sizeof(int32);

            for(i = 0; i < m_scanlines.size(); ++i)
            {
                const scanline_data& sl_this = m_scanlines[i];
                
                int8u* size_ptr = data;
                data += sizeof(int32);  // Reserve space for scanline size in bytes

                write_int32(data, sl_this.y);            // Y
                data += sizeof(int32);

                write_int32(data, sl_this.num_spans);    // num_spans
                data += sizeof(int32);

                unsigned num_spans = sl_this.num_spans;
                unsigned span_idx  = sl_this.start_span;
                do
                {
                    const span_data& sp = m_spans[span_idx++];
                    const T* covers = covers_by_index(sp.covers_id);

                    write_int32(data, sp.x);            // X
                    data += sizeof(int32);

                    write_int32(data, sp.len);          // span_len
                    data += sizeof(int32);

                    if(sp.len < 0)
                    {
                        memcpy(data, covers, sizeof(T));
                        data += sizeof(T);
                    }
                    else
                    {
                        memcpy(data, covers, unsigned(sp.len) * sizeof(T));
                        data += sizeof(T) * unsigned(sp.len);
                    }
                }
                while(--num_spans);
                write_int32(size_ptr, int32(unsigned(data - size_ptr)));
            }
        }


        //---------------------------------------------------------------
        const scanline_data& scanline_by_index(unsigned i) const
        {
            return (i < m_scanlines.size()) ? m_scanlines[i] : m_fake_scanline;
        }

        //---------------------------------------------------------------
        const span_data& span_by_index(unsigned i) const
        {
            return (i < m_spans.size()) ? m_spans[i] : m_fake_span;
        }

        //---------------------------------------------------------------
        const T* covers_by_index(int i) const
        {
            return m_covers[i];
        }

    private:
        scanline_cell_storage<T>      m_covers;
        pod_bvector<span_data, 10>    m_spans;
        pod_bvector<scanline_data, 8> m_scanlines;
        span_data     m_fake_span;
        scanline_data m_fake_scanline;
        int           m_min_x;
        int           m_min_y;
        int           m_max_x;
        int           m_max_y;
        unsigned      m_cur_scanline;
    };


    typedef scanline_storage_aa<int8u>  scanline_storage_aa8;  //--------scanline_storage_aa8
    typedef scanline_storage_aa<int16u> scanline_storage_aa16; //--------scanline_storage_aa16
    typedef scanline_storage_aa<int32u> scanline_storage_aa32; //--------scanline_storage_aa32




    //------------------------------------------serialized_scanlines_adaptor_aa
    template<class T> class serialized_scanlines_adaptor_aa
    {
    public:
        typedef T cover_type;

        //---------------------------------------------------------------------
        class embedded_scanline
        {
        public:
            typedef T cover_type;

            //-----------------------------------------------------------------
            class const_iterator
            {
            public:
                struct span
                {
                    int32    x;
                    int32    len; // If negative, it's a solid span, "covers" is valid
                    const T* covers; 
                };

                const_iterator() : m_ptr(0) {}
                const_iterator(const embedded_scanline& sl) :
                    m_ptr(sl.m_ptr),
                    m_dx(sl.m_dx)
                {
                    init_span();
                }

                const span& operator*()  const { return m_span;  }
                const span* operator->() const { return &m_span; }

                void operator ++ ()
                {
                    if(m_span.len < 0) 
                    {
                        m_ptr += sizeof(T);
                    }
                    else 
                    {
                        m_ptr += m_span.len * sizeof(T);
                    }
                    init_span();
                }

            private:
                int read_int32()
                {
                    int32 val;
                    ((int8u*)&val)[0] = *m_ptr++;
                    ((int8u*)&val)[1] = *m_ptr++;
                    ((int8u*)&val)[2] = *m_ptr++;
                    ((int8u*)&val)[3] = *m_ptr++;
                    return val;
                }

                void init_span()
                {
                    m_span.x      = read_int32() + m_dx;
                    m_span.len    = read_int32();
                    m_span.covers = m_ptr;
                }

                const int8u* m_ptr;
                span         m_span;
                int          m_dx;
            };

            friend class const_iterator;


            //-----------------------------------------------------------------
            embedded_scanline() : m_ptr(0), m_y(0), m_num_spans(0) {}

            //-----------------------------------------------------------------
            void     reset(int, int)     {}
            unsigned num_spans()   const { return m_num_spans;  }
            int      y()           const { return m_y;          }
            const_iterator begin() const { return const_iterator(*this); }


        private:
            //-----------------------------------------------------------------
            int read_int32()
            {
                int32 val;
                ((int8u*)&val)[0] = *m_ptr++;
                ((int8u*)&val)[1] = *m_ptr++;
                ((int8u*)&val)[2] = *m_ptr++;
                ((int8u*)&val)[3] = *m_ptr++;
                return val;
            }

        public:
            //-----------------------------------------------------------------
            void init(const int8u* ptr, int dx, int dy)
            {
                m_ptr       = ptr;
                m_y         = read_int32() + dy;
                m_num_spans = unsigned(read_int32());
                m_dx        = dx;
            }

        private:
            const int8u* m_ptr;
            int          m_y;
            unsigned     m_num_spans;
            int          m_dx;
        };



    public:
        //--------------------------------------------------------------------
        serialized_scanlines_adaptor_aa() :
            m_data(0),
            m_end(0),
            m_ptr(0),
            m_dx(0),
            m_dy(0),
            m_min_x(0x7FFFFFFF),
            m_min_y(0x7FFFFFFF),
            m_max_x(-0x7FFFFFFF),
            m_max_y(-0x7FFFFFFF)
        {}

        //--------------------------------------------------------------------
        serialized_scanlines_adaptor_aa(const int8u* data, unsigned size,
                                        double dx, double dy) :
            m_data(data),
            m_end(data + size),
            m_ptr(data),
            m_dx(iround(dx)),
            m_dy(iround(dy)),
            m_min_x(0x7FFFFFFF),
            m_min_y(0x7FFFFFFF),
            m_max_x(-0x7FFFFFFF),
            m_max_y(-0x7FFFFFFF)
        {}

        //--------------------------------------------------------------------
        void init(const int8u* data, unsigned size, double dx, double dy)
        {
            m_data  = data;
            m_end   = data + size;
            m_ptr   = data;
            m_dx    = iround(dx);
            m_dy    = iround(dy);
            m_min_x = 0x7FFFFFFF;
            m_min_y = 0x7FFFFFFF;
            m_max_x = -0x7FFFFFFF;
            m_max_y = -0x7FFFFFFF;
        }

    private:
        //--------------------------------------------------------------------
        int read_int32()
        {
            int32 val;
            ((int8u*)&val)[0] = *m_ptr++;
            ((int8u*)&val)[1] = *m_ptr++;
            ((int8u*)&val)[2] = *m_ptr++;
            ((int8u*)&val)[3] = *m_ptr++;
            return val;
        }

        //--------------------------------------------------------------------
        unsigned read_int32u()
        {
            int32u val;
            ((int8u*)&val)[0] = *m_ptr++;
            ((int8u*)&val)[1] = *m_ptr++;
            ((int8u*)&val)[2] = *m_ptr++;
            ((int8u*)&val)[3] = *m_ptr++;
            return val;
        }
        
    public:
        // Iterate scanlines interface
        //--------------------------------------------------------------------
        bool rewind_scanlines()
        {
            m_ptr = m_data;
            if(m_ptr < m_end)
            {
                m_min_x = read_int32() + m_dx; 
                m_min_y = read_int32() + m_dy;
                m_max_x = read_int32() + m_dx;
                m_max_y = read_int32() + m_dy;
            }
            return m_ptr < m_end;
        }

        //--------------------------------------------------------------------
        int min_x() const { return m_min_x; }
        int min_y() const { return m_min_y; }
        int max_x() const { return m_max_x; }
        int max_y() const { return m_max_y; }

        //--------------------------------------------------------------------
        template<class Scanline> bool sweep_scanline(Scanline& sl)
        {
            sl.reset_spans();
            for(;;)
            {
                if(m_ptr >= m_end) return false;

                read_int32();      // Skip scanline size in bytes
                int y = read_int32() + m_dy;
                unsigned num_spans = read_int32();

                do
                {
                    int x = read_int32() + m_dx;
                    int len = read_int32();

                    if(len < 0)
                    {
                        sl.add_span(x, unsigned(-len), *m_ptr);
                        m_ptr += sizeof(T);
                    }
                    else
                    {
                        sl.add_cells(x, len, m_ptr);
                        m_ptr += len * sizeof(T);
                    }
                }
                while(--num_spans);

                if(sl.num_spans())
                {
                    sl.finalize(y);
                    break;
                }
            }
            return true;
        }


        //--------------------------------------------------------------------
        // Specialization for embedded_scanline
        bool sweep_scanline(embedded_scanline& sl)
        {
            do
            {
                if(m_ptr >= m_end) return false;

                unsigned byte_size = read_int32u();
                sl.init(m_ptr, m_dx, m_dy);
                m_ptr += byte_size - sizeof(int32);
            }
            while(sl.num_spans() == 0);
            return true;
        }

    private:
        const int8u* m_data;
        const int8u* m_end;
        const int8u* m_ptr;
        int          m_dx;
        int          m_dy;
        int          m_min_x;
        int          m_min_y;
        int          m_max_x;
        int          m_max_y;
    };



    typedef serialized_scanlines_adaptor_aa<int8u>  serialized_scanlines_adaptor_aa8;  //----serialized_scanlines_adaptor_aa8
    typedef serialized_scanlines_adaptor_aa<int16u> serialized_scanlines_adaptor_aa16; //----serialized_scanlines_adaptor_aa16
    typedef serialized_scanlines_adaptor_aa<int32u> serialized_scanlines_adaptor_aa32; //----serialized_scanlines_adaptor_aa32

}


#endif

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Russian Federation Russian Federation
This member has not yet provided a Biography. Assume it's interesting and varied, and probably something to do with programming.

Comments and Discussions