Click here to Skip to main content
15,895,746 members
Articles / High Performance Computing / Vectorization

Bird Programming Language: Part 1

Rate me:
Please Sign up or sign in to vote.
4.92/5 (129 votes)
1 Jan 2013GPL312 min read 384.3K   2.7K   153  
A new general purpose language that aims to be fast, high level and simple to use.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Anonymus.x86
{
	public class x86ConditionalJump : JumpInstruction
	{
		public string Condition;

		public x86ConditionalJump(int Label, string Condition)
			: base(Label)
		{
			this.Condition = Condition;
		}

		public override string GetCode(Compiler Comp)
		{
			return "\tj" + Condition + " _" + Label + "\n";
		}
	}

	public class x86IdContainerData
	{
		public IdContainer Container;
		public x86DataAllocator Allocator;

		public x86IdContainerData(IdContainer Container)
		{
			this.Container = Container;
			
			if (Container.FuncScope != null)
				this.Allocator = new x86DataAllocator(Container);
		}

		public void Reset()
		{
			Allocator.Reset();
		}
	}

	public class x86FuncContainerData : x86IdContainerData
	{
		public x86RegList UsedByParams;
		public int PushedBytes;
		public int FuncCallPushed;
		public int StackAlloc;
		public int ParamsLength;

		public x86FuncContainerData(IdContainer Container)
			: base(Container)
		{
		}
	}

	public class x86FuncScopeNode : FuncScopeNode
	{
		public x86Architecture Arch;
        public bool AllocTmpRetVal = false;

		public x86FuncScopeNode(x86Architecture Arch, IdContainer Parent, PString Name, FunctionType Type, bool IsStatic, PString[] Source)
			: base(Parent, Name, Type, IsStatic, Source)
		{
			this.Arch = Arch;
			var RetType = Type.RetType.RealType;

            if (RetType is ValueType)
            {
                RetVar.Type = RetVar.Type.CreateRefType();
                RetVar.PreAssigned = true;
                Params.Insert(0, RetVar);
            }
            else
            {
                if (TmpRetVal != null)
                    AllocTmpRetVal = true;

                if (RetType is NumberType || RetType is PointerType || RetType is BoolType ||
                    RetType is RefType || RetType is ClassType)
                {
                    var Size = Type.RetType.Size;
                    var RegSize = Arch.RegSize;

                    if (Size > RegSize)
                    {
                        if (Size == 2 * RegSize) RetVar.ArchData = Arch.MultiRegPos(0, 2);
                        else throw new NotImplementedException();
                    }
                    else
                    {
                        if (Type.Conv == CallConv.AsCall)
							RetVar.ArchData = new x86RegPosition(Arch, RetType.Size, 0);
						else RetVar.ArchData = new x86RegPosition(Arch, RegSize, 0);
                    }

                }
                else if (!(RetType is FloatType) && !(RetType is VoidType))
                {
                    throw new Exception("ERROR");
                }
            }
		}

		public bool ChkMem2Mem(CodeScopeNode Scope)
		{
			var CommCount = Scope.Commands.Count;
			for (var CommId = 0; CommId < CommCount; CommId++)
			{
				var Comm = Scope.Commands[CommId];
				foreach (var Node in Comm.EnumExpressions)
				{
					var Calcer = new x86DataPosCalcer(Comm, State, Node);
					if (!Calcer.ChkMem2Mem())
						return false;
				}

				foreach (var ChScope in Comm.EnumScopes)
					if (!ChkMem2Mem(ChScope)) return false;
			}

			return true;
		}

		void Reset(IdContainer Container)
		{
			var ContainerData = Container.ArchData as x86IdContainerData;
			ContainerData.Reset();

			foreach (var Loc in Container.EnumLocals)
				Loc.ArchData = null;

			foreach (var Ch in Container.EnumChildren)
				Reset(Ch);
		}
		
		x86DataAllocator CalcLocals(IdContainer Container)
		{
			var Data = Container.ArchData as x86IdContainerData;
			var Ret = Data.Allocator.Copy();

			foreach (var Ch in Container.EnumChildren)
				Ret.SetUsed(CalcLocals(Ch));

			foreach (var Loc in Container.EnumLocals)
			{
				var T = Loc.Type;
				var DataCalcPos = !Loc.CanBeInReg || T is ValueType ?
					x86DataCalcPos.Memory : x86DataCalcPos.GRegMem;

				Loc.ArchData = Ret.Alloc(T.Size, Arch.GetAlign(T), DataCalcPos);
			}

			return Ret;
		}

		int PushPopRegs(Compiler Compiler, x86DataAllocator ContainerData, bool Push, CallConv Conv)
		{
			var UsedRegs = ContainerData.UsedRegs;
			var Ret = 0;

			if (Push)
			{
				for (var i = 0; i < UsedRegs.Size; i++)
					if (PushPopReg(Compiler, Push, i, UsedRegs[i], Conv)) Ret++;
			}
			else
			{
				for (var i = UsedRegs.Size - 1; i >= 0; i--)
					if (PushPopReg(Compiler, Push, i, UsedRegs[i], Conv)) Ret++;
			}

			return Ret;
		}

		private bool PushPopReg(Compiler Compiler, bool Push, int Index, int Size, CallConv Conv)
		{
			if (Size > 0 && !x86Architecture.IsVolatileReg(Index, Conv))
			{
				if (Push) Compiler.Append("\tpush ");
				else Compiler.Append("\tpop ");
				if (Size < 2) Size = 2;

				Compiler.Append(x86Architecture.RegStr(Index, Size));
				Compiler.Append("\n");
				return true;
			}

			return false;
		}

		public override void CreateAsmCode()
        {
            CalcParamDataPos();
			var Compiler = State.Arch.CreateCompiler(State);
			var ContainerData = (x86DataAllocator)null;
			var Dic = CalcPositions(ref ContainerData);

            ReplaceJumpsFunc Func = C => EndFunction(C, ContainerData);
            Compiler.SetJumpReplacing(RetLabel, Func);

            BeginFunction(Compiler, ContainerData, Dic);
			base.GetAsmCode(Compiler);
            EndFunction(Compiler, ContainerData);

			Compiler.Optimize();
			AsmCode = Compiler.GetAssembly();
		}

        private void EndFunction(Compiler Compiler, x86DataAllocator ContainerData)
        {
            var Data = ArchData as x86FuncContainerData;
            if (Data.StackAlloc > 0) Compiler.Append("\tadd esp, " + Data.StackAlloc + "\n");
            PushPopRegs(Compiler, ContainerData, false, Type.Conv);

            if (Type.Conv == CallConv.StdCall || Type.Conv == CallConv.AsCall)
            {
                if (Data.ParamsLength > 0)
                    Compiler.Append("\tret " + Data.ParamsLength.ToString() + "\n");
                else Compiler.Append("\tret\n");
            }
            else if (Type.Conv == CallConv.CDecl)
            {
                Compiler.Append("\tret\n");
            }
        }

        private void BeginFunction(Compiler Compiler, x86DataAllocator ContainerData, Dictionary<x86DataPosition, x86DataPosition> Dic)
        {
            var Data = ArchData as x86FuncContainerData;
            Data.PushedBytes = PushPopRegs(Compiler, ContainerData, true, Type.Conv) * Arch.RegSize;
            Data.StackAlloc = ContainerData.StackAlloc;
            if (Data.StackAlloc > 0)
            {
                Data.StackAlloc = Helper.AdjustVarPos(Data.StackAlloc, Arch.RegSize);
                Compiler.Append("\tsub esp, " + Data.StackAlloc.ToString() + "\n");
            }

            foreach (var e in Dic)
                Compiler.Append("\tmov " + e.Value + ", " + e.Key + "\n");
        }

		private Dictionary<x86DataPosition, x86DataPosition> CalcPositions(ref x86DataAllocator ContainerData)
        {
            var Data = ArchData as x86FuncContainerData;
			var Dic = (Dictionary<x86DataPosition, x86DataPosition>)null;
			var VarPos = (Dictionary<LocalVariable, object>)null;
            var Count = 0;
            var ReCalc = false;

			do
			{
                ReCalc = false;
				Reset(this);
				CalcExprRegs();

				ContainerData = CalcLocals(this);
                if (AllocTmpRetVal)
                    TmpRetVal.ArchData = ContainerData.Alloc(TmpRetVal.Type);

				if (Dic == null)
				{
					Dic = new Dictionary<x86DataPosition, x86DataPosition>();
					VarPos = new Dictionary<LocalVariable, object>();

					foreach (var e in Params)
						VarPos.Add(e, e.ArchData);
				}
				else
				{
					Dic.Clear();
					foreach (var e in Params)
						e.ArchData = VarPos[e];
				}

                foreach (var e in Params)
                {
                    var Reg = e.ArchData as x86RegPosition;
                    if (Reg != null && ContainerData.UsedRegs[Reg.Index] > 0)
                    {
                        var P = ContainerData.Alloc(Reg.Size, Reg.Size);
                        e.ArchData = P;
                        Dic.Add(Reg, P);

                        if (Data.UsedByParams[Reg.Index] != 0) ReCalc = true;
                        Data.UsedByParams[Reg.Index] = 0;
                    }
                }

				Count++;
				if (Count > 32) throw new Exception("ERROR");
			} while (ReCalc || !ChkMem2Mem(this));
			return Dic;
		}

        void OnParamCalced(Variable Var)
        {
            if (Var == RetVar && TmpRetVal != null)
            {
                TmpRetVal.PreAssigned = true;
                TmpRetVal.Type = Var.Type;
                TmpRetVal.ArchData = Var.ArchData;
            }
        }

		protected void CalcParamDataPos()
		{
            var Data = ArchData as x86FuncContainerData;

			var NParams = Params;
			if (Type.Conv == CallConv.AsCall)
			{
                Data.UsedByParams = new x86RegList(Arch.RegCount);
				NParams = Params.ToList();
				var Index = 0;

				var Types = new Type[Params.Count];
				for (var i = 0; i < Params.Count; i++)
					Types[i] = Params[i].Type;

				foreach (var i in Arch.EnumFirstAsCallParams(Types))
				{
					var V = Params[i];
					var Reg = x86DataAllocator.RegAllocSequence[Index];
                    Data.UsedByParams.SetUsed(Reg, V.Type.Size);

					V.ArchData = new x86RegPosition(Arch, V.Type.Size, Reg);
                    OnParamCalced(V);

					NParams.Remove(V);
					Index++;
				}
			}

			var P = 0;
			foreach (var V in NParams)
			{
				P = Helper.AdjustVarPos(P, Arch.RegSize);
				var S = V.Type.Size;
                V.ArchData = new x86StackPosition(this, S, P, true);
                OnParamCalced(V);

				P += S;
			}

			P = Helper.AdjustVarPos(P, Arch.RegSize);
            Data.ParamsLength = P;
		}
	}

	public class x86MoveCondBranch : CondBranch
	{
		public x86DataPosition Dst;
		public x86DataPosition Src;
		public x86ExprScope Scope;
		public bool SrcSigned;

		public x86MoveCondBranch(x86DataPosition Dst, x86DataPosition Src,
			x86ExprScope Scope, bool SrcSigned = false)
		{
			this.Dst = Dst;
			this.Src = Src;
			this.Scope = Scope;
			this.SrcSigned = SrcSigned;
		}
	}

	public class x86Architecture : Architecture
	{
		public bool x86_64;

		public override int RegSize { get { return x86_64 ? 8 : 4; } }
		public override int RegCount { get { return x86_64 ? 15 : 7; } }
		public override int MaxStructPow2Size { get { return 16; } }
		public int ByteRegCount { get { return x86_64 ? 14 : 4; } }

        public static bool NeedLoadFloatDst(ExpressionNode Dst, bool Mod)
        {
            if (Dst is IdExpressionNode && Mod) return true;
            if (Dst is ConstExpressionNode) return true;

            var OpNode = Dst as OpExpressionNode;
            if (OpNode == null) return false;
            var Op = OpNode.Operator;

            if ((Op == Operator.Member || Op == Operator.Index) && Mod) return true;
            return false;
        }

		public static x86DataCalcPos TypePos(Type T)
		{
			T = T.RealType;
			if (T is FloatType) return x86DataCalcPos.Memory;
			else if (T is ValueType) return x86DataCalcPos.Memory;
			else return x86DataCalcPos.GRegMem;
		}

		public x86RegPosition GetArgP(ref int Index, int Size)
		{
			var Reg = x86DataAllocator.RegAllocSequence[Index];
			Index++;
			return new x86RegPosition(this, Size, Reg);
		}

		public IEnumerable<int> EnumFirstAsCallParams(Type[] Params, int Count = 0)
		{
			for (var i = 0; i < Params.Length; i++)
			{
				var T = Params[i];
				if (T is RefType || T is ClassType || T is PointerType)
				{
					yield return i;
					Count++;
					if (Count > 2) yield break;
				}
			}

            if (Count > 2) yield break;

			for (var i = 0; i < Params.Length; i++)
			{
				var T = Params[i];
				if (T is NonFltNumType && T.Size <= RegSize)
				{
					yield return i;
					Count++;
					if (Count > 2) yield break;
				}
			}
		}

		public override int GetAlign(Type Type)
		{
			Type = Type.RealType;
			if (Type is NumberType || Type is BoolType)
			{
				var S = Type.Size;
				var RS = RegSize;

				if (S <= RS) return S;
				else return RS;
			}
			else if (Type is PointerType || Type is StructuredType ||
				Type is FunctionType || Type is RefType)
			{
				return RegSize;
			}
			else
			{
				throw new NotImplementedException();
			}
		}

		public override void OnNewIdentifier(Identifier Id)
		{
			var Asm = Id.AsmName;
			if (Id is Variable)
			{
				var Var = Id as Variable;
				var Type = Var.Type;

				if (Id is GlobalVariable)
				{
					if (Id.Container is ImportScopeNode) throw new Exception("ERROR");
					Id.ArchData = new x86MemPosition(this, Type.Size, Asm, 0, true, 16);
					return;
				}
			}
			else if (Id is Function)
			{
				Id.ArchData = new x86MemPosition(this, RegSize,
					Asm, 0, Id.Container is ImportScopeNode);

				return;
			}
		}

		public x86Architecture(bool x86_64)
		{
			this.x86_64 = x86_64;
		}

		public override void CalcExprDataPos(CompilerState State, IdContainer Container, ExpressionNode Expr)
		{
			var RegCalcer = new x86DataPosCalcer(Container, State, Expr);
			RegCalcer.Calc();
		}

		public override void OnNewContainer(IdContainer Container)
		{
			if (Container is FuncScopeNode)
			{
				Container.ArchData = new x86FuncContainerData(Container);
			}
			else if (Container is GlobalScopeNode)
			{
				var Glb = Container as GlobalScopeNode;
				if (Glb.ExternScopes == null) Glb.ExternScopes = new List<ExternScopeNode>();
				var Scope = new ExternScopeNode(Glb, null);
				Glb.ExternScopes.Add(Scope);

				var L = new List<Identifier>();
				L.Add(CreateFunc(Scope, CallConv.AsCall, "ULongToFloat", "float", "ulong"));
				L.Add(CreateFunc(Scope, CallConv.AsCall, "FloatToULong", "ulong", "float"));
				L.Add(CreateFunc(Scope, CallConv.AsCall, "DoubleToULong", "ulong", "double"));

				L.Add(CreateFunc(Scope, CallConv.AsCall, "LongMul", "long", "long", "long"));
				L.Add(CreateFunc(Scope, CallConv.AsCall, "LongDiv", "long", "long", "long"));
				L.Add(CreateFunc(Scope, CallConv.AsCall, "ULongDiv", "ulong", "ulong", "ulong"));
				L.Add(CreateFunc(Scope, CallConv.AsCall, "LongMod", "long", "long", "long"));
				L.Add(CreateFunc(Scope, CallConv.AsCall, "ULongMod", "ulong", "ulong", "ulong"));
				L.Add(CreateFunc(Scope, CallConv.AsCall, "LongShiftLeft", "long", "long", "long"));
				L.Add(CreateFunc(Scope, CallConv.AsCall, "LongShiftRight", "long", "long", "long"));
				L.Add(CreateFunc(Scope, CallConv.AsCall, "ULongShiftRight", "ulong", "ulong", "ulong"));

				L.Add(CreateFunc(Scope, CallConv.AsCall, "Math_ArcSine", "double", "double"));
				L.Add(CreateFunc(Scope, CallConv.AsCall, "Math_ArcCosine", "double", "double"));
				Glb.Identifiers.AddRange(L);
			}
			else
			{
				Container.ArchData = new x86IdContainerData(Container);
			}
		}

		private Function CreateFunc(ScopeNode Scope, CallConv Conv,
			string FuncName, string RetType, params string[] Params)
		{
			var RType = Scope.GetId<Type>(new PString(RetType));
			if (RType == null) throw new Exception("ERROR");

			var DeclList = new VarDeclList();
			foreach (var e in Params)
			{
				var T = Scope.GetId<Type>(new PString(e));
				DeclList.Add(new VarDecl(null, null, T, null, null));
			}

			var Type = new FunctionType(Scope, new PString(FuncName), Conv, RType, DeclList);
			var Func = new Function(Scope, new PString(FuncName), Type, null);
			Func.DeclInThis = false;
			OnNewIdentifier(Func);

			if (!Scope.CanIdDeclared(Func)) return null;
			Scope.Identifiers.Add(Func);
			return Func;
		}

		public override Compiler CreateCompiler(CompilerState State)
		{
			return new x86Compiler(this, State);
		}

		public override ExprPlugIn CreatePlugIn(IdContainer Container)
		{
			return new x86PlugIn(this, Container);
		}

		public override FuncScopeNode CreateFuncScope(IdContainer Parent,
			PString Name, FunctionType Type, bool IsStatic, PString[] Source)
		{
			var Ret = new x86FuncScopeNode(this, Parent, Name, Type, IsStatic, Source);
			OnNewContainer(Ret);
			return Ret;
		}

		public bool IsCanbeReg(int RegId, int Size)
		{
			return RegId < RegCount && Size <= RegSize && (Size != 1 || RegId < ByteRegCount);
		}

		public static bool IsRegPos(x86DataPosition Pos, int Index)
		{
			var RegPos = Pos as x86RegPosition;
			return RegPos != null && RegPos.Index == Index;
		}

		public bool RegExists(int Index, int Size, bool HighBytes)
		{
			if (Index >= RegCount) return false;
			if (Size > 1) return true;
			if (Index < 4) return true;
			if ((Index == 4 || Index == 5) && x86_64) return true;
			return false;
		}

		public static string GetTypeString(int Size)
		{
			switch (Size)
			{
				case 1: return "byte";
				case 2: return "word";
				case 4: return "dword";
				case 6: return "pword";
				case 8: return "qword";
				case 10: return "tword";
				case 16: return "dqword";
				default: return null;
			}
		}

		public static string GetDataTypeString(int Size)
		{
			switch (Size)
			{
				case 1: return "db";
				case 2: return "dw";
				case 4: return "dd";
				case 6: return "dp";
				case 8: return "dq";
				case 10: return "dt";
				default: return null;
			}
		}

		public static bool IsVolatileReg(int Id, CallConv Conv)
		{
			if (Conv == CallConv.CDecl || Conv == CallConv.StdCall)
			{
				if (Id == 0) return true;
				if (Id == 1) return true;
				if (Id == 2) return true;

				if (Id == 7) return true;
				if (Id == 8) return true;
				if (Id == 9) return true;
				if (Id == 10) return true;
			}
			else if (Conv == CallConv.AsCall)
			{
				if (Id == 0) return true;
				if (Id == 1) return true;
				if (Id == 2) return true;
				if (Id == 3) return true;

				if (Id == 7) return true;
				if (Id == 8) return true;
				if (Id == 9) return true;
				if (Id == 10) return true;
			}
			else
			{
				throw new Exception("ERROR");
			}

			return false;
		}

		public static string RegStr(int Id, int Size, bool HighBytes = false)
		{
			if (Size == 1)
			{
				switch (Id)
				{
					case 0: return HighBytes ? "ah" : "al";
					case 1: return HighBytes ? "ch" : "cl";
					case 2: return HighBytes ? "dh" : "dl";
					case 3: return HighBytes ? "bh" : "bl";
					case 4: return "sil";
					case 5: return "dil";

					default:
						if (Id > 6 && Id < 16) return "r" + Id + "b";
						else return null;
				}
			}
			else if (Size == 2)
			{
				switch (Id)
				{
					case 0: return "ax";
					case 1: return "cx";
					case 2: return "dx";
					case 3: return "bx";
					case 4: return "si";
					case 5: return "di";
					case 6: return "bp";

					default:
						if (Id > 6 && Id < 16) return "r" + Id + "w";
						else return null;
				}
			}
			else if (Size == 4)
			{
				switch (Id)
				{
					case 0: return "eax";
					case 1: return "ecx";
					case 2: return "edx";
					case 3: return "ebx";
					case 4: return "esi";
					case 5: return "edi";
					case 6: return "ebp";

					default:
						if (Id > 6 && Id < 16) return "r" + Id + "d";
						else return null;
				}
			}
			else if (Size == 8)
			{
				switch (Id)
				{
					case 0: return "rax";
					case 1: return "rcx";
					case 2: return "rdx";
					case 3: return "rbx";
					case 4: return "rsi";
					case 5: return "rdi";
					case 6: return "rbp";

					default:
						if (Id > 6 && Id < 16) return "r" + Id;
						else return null;
				}
			}
			else
			{
				return null;
			}
		}

		public static string OpInstruction(Operator Op, bool Signed)
		{
			if (Op == Operator.Equal) return "e";
			if (Op == Operator.Nonequal) return "ne";
			if (Op == Operator.Less) return Signed ? "l" : "b";
			if (Op == Operator.LessEqual) return Signed ? "le" : "be";
			if (Op == Operator.Greater) return Signed ? "g" : "a";
			if (Op == Operator.GreaterEqual) return Signed ? "ge" : "ae";

			return null;
		}

		public x86MultiPosition MultiRegPos(params int[] Positions)
		{
			var RetPositions = new x86DataPosition[Positions.Length];
			for (var i = 0; i < Positions.Length; i++)
				RetPositions[i] = new x86RegPosition(this, RegSize, Positions[i]);

			return new x86MultiPosition(this, Positions.Length * RegSize, RetPositions);
		}

		public x86MoveCondBranch GetMoveCondBranch(GlobalScopeNode Global, Type SrcType,
			x86DataPosition From, x86DataPosition To, x86ExprScope Scope, bool ConvConst)
		{
			if (To != null && To.Size > 1 && !(To is x86MultiPosition) && !(To is x86MemPosition))
			{
				if (ConvConst && From is x86ConstPosition)
				{
					var ConstPos = From as x86ConstPosition;
					var GlbVar = Global.CreateExprConst(ConstPos.Data, SrcType);
					From = GlbVar.ArchData as x86DataPosition;
				}

				if (Scope == null) { ; }
				return new x86MoveCondBranch(To, From, Scope, SrcType is SignedType);
			}

			return null;
		}

		public x86MoveCondBranch GetCastConstBranch(Compiler Compiler, GlobalScopeNode Global,
			ExpressionNode Node, bool ConvConst)
		{
			var CastNode = Node as CastExpressionNode;
			if (CastNode == null) return null;
			var Ch = CastNode.Child;
			if (!Ch.Type.IsEqual(Node.Type)) return null;
			
			var x86Comp = Compiler as x86Compiler;
			var From = x86Comp.GetNodePos(Ch, GetNodePosMode.RetNull);
			var To = x86Comp.GetNodePos(Node, GetNodePosMode.StrOnly);

			if (From != null && To != null)
			{
				var Data = Node.ArchData as x86NodeData;
				return GetMoveCondBranch(Global, Ch.Type, From, To, Data.Scope, ConvConst);
			}

			return null;
		}

		public x86MoveCondBranch GetAssignmentBranch(Compiler Compiler, GlobalScopeNode Global,
			ExpressionNode Node, bool ConvConst)
		{
			var OpNode = Node as OpExpressionNode;
			if (OpNode == null) return null;
			var Op = OpNode.Operator;
			var Ch = OpNode.Children;

			var x86Comp = Compiler as x86Compiler;
			var To = x86Comp.GetNodePos(Ch[0], GetNodePosMode.RetNull);
			var From = x86Comp.GetNodePos(Ch[1], GetNodePosMode.RetNull);

			if (From == null && To != null && Ch[1].GetPosition().IsEqual(To))
				return GetCastConstBranch(Compiler, Global, Ch[1], ConvConst);

			if (From != null && To != null)
			{
				var Data = Node.ArchData as x86NodeData;
				return GetMoveCondBranch(Global, Ch[0].Type, From, To, Data.Scope, ConvConst);
			}

			return null;
		}

		public CondBranch GetNodeCondBrach(Compiler Compiler, GlobalScopeNode Global,
			ExpressionNode Node, bool ConvConst, bool RetNull = false, bool EnableMoveBranch = true)
		{
			if (EnableMoveBranch)
			{
				if (Node is CastExpressionNode)
				{
					var Ret = GetCastConstBranch(Compiler, Global, Node, ConvConst);
					if (Ret != null) return Ret;
				}
				else if (Node is OpExpressionNode)
				{
					var Ret = GetAssignmentBranch(Compiler, Global, Node, ConvConst);
					if (Ret != null) return Ret;
				}
			}

			if (RetNull) return null;
			return new CodeCondBranch((Comp) => { Comp.GetExprCode(Node); });
		}

		private ExpressionNode GetExpr(Command Obj)
		{
			var ExprComm = Obj as ExpressionCommand;
			if (ExprComm == null) return null;
			return ExprComm.Expression;
		}

		public override CondBranch[] GetBraches(Compiler Compiler, GlobalScopeNode Global,
			Command Then, Command Else, ref ExpressionNode Condition)
		{
			if (Then is JumpCommand || Else is JumpCommand)
			{
				var GotoThen = Then as JumpCommand;
				var GotoElse = Else as JumpCommand;

				var RetThen = GotoThen != null ? new JumpCodeBranch(GotoThen.Label) : null;
				var RetElse = GotoElse != null ? new JumpCodeBranch(GotoElse.Label) : null;
				return new CondBranch[] { RetThen, RetElse };
			}

			var OpCond = Condition as OpExpressionNode;
			if (!Operators.IsRelEqualityOp(OpCond.Operator))
				return new CondBranch[] { null, null };

			var ExprElse = GetNodeCondBrach(Compiler, Global, GetExpr(Else), false, true);
			var MoveElse = ExprElse as x86MoveCondBranch;
			var ConvConst = MoveElse != null && MoveElse.Src is x86ConstPosition;

			var ExprThen = GetNodeCondBrach(Compiler, Global, GetExpr(Then), ConvConst, true);
			var MoveThen = ExprThen as x86MoveCondBranch;

			if (!ConvConst && MoveThen != null && MoveThen.Src is x86ConstPosition)
			{
				OpCond.Operator = Operators.NegateOp(OpCond.Operator);
				return new CondBranch[] { ExprElse, ExprThen };
			}

			return new CondBranch[] { ExprThen, ExprElse };
		}
		
	}
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The GNU General Public License (GPLv3)


Written By
Software Developer
Hungary Hungary
This member has not yet provided a Biography. Assume it's interesting and varied, and probably something to do with programming.

Comments and Discussions