Click here to Skip to main content
15,891,981 members
Articles / Desktop Programming / WPF

Duplicate songs detector via audio fingerprinting

Rate me:
Please Sign up or sign in to vote.
4.96/5 (337 votes)
23 Jun 2020MIT44 min read 1.3M   20.4K   533  
Explains sound fingerprinting algorithm, with a practical example of detecting duplicate files on the user's local drive.
The aim of this article is to show an efficient algorithm of signal processing which will allow one to have a competent system of sound fingerprinting and signal recognition. I'll try to come with some explanations of the article's algorithm, and also speak about how it can be implemented using the C# programming language. Additionally, I'll try to cover topics of digital signal processing that are used in the algorithm, thus you'll be able to get a clearer image of the entire system. And as a proof of concept, I'll show you how to develop a simple WPF MVVM application.
// Sound Fingerprinting framework
// git://github.com/AddictedCS/soundfingerprinting.git
// Code license: CPOL v.1.02
// ciumac.sergiu@gmail.com
using System;
using System.Collections.Generic;
using System.Linq;

namespace Soundfingerprinting.Hashing
{
    /// <summary>
    ///   Summed accross selection of LGroups of permutations according to the minimal mutual information 
    ///   spread accross the elements of the group
    /// </summary>
    public class SummedAcrossSelector : IMinMutualSelector
    {
        #region IMinMutualSelector Members

        /// <summary>
        ///   Get permutations using summed across technique
        /// </summary>
        /// <param name = "randomPermutationPool">Random permutation pool</param>
        /// <param name = "lHashTable">L Hash tables</param>
        /// <param name = "bKeysPerTable">K keys per table</param>
        /// <returns>LGroups of permutation specific to LHashtables</returns>
        public Dictionary<int, List<int[]>> GetPermutations(Dictionary<int, int[]> randomPermutationPool, int lHashTable, int bKeysPerTable)
        {
            List<int> possibleIndexes = randomPermutationPool.Keys.ToList(); /*[0, poolcount]*/

            /*Find the unconditional entropy for every permutation*/
            Dictionary<int, double> entropy = new Dictionary<int, double>();
            foreach (KeyValuePair<int, int[]> pair in randomPermutationPool)
            {
                double ent = SignalUtils.Entropy(pair.Value);
                entropy.Add(pair.Key, ent);
            }

            /*Order the permutations in order to find highest unconditional entropy permutations*/
            IOrderedEnumerable<KeyValuePair<int, double>> order = entropy.OrderByDescending((pair) => pair.Value);

            /*For each of the L groups assign initial permutation*/
            Dictionary<int, List<int[]>> LGroups = new Dictionary<int, List<int[]>>();
            int count = 0;
            foreach (KeyValuePair<int, double> ordered in order)
            {
                if (count < lHashTable)
                {
                    LGroups.Add(count, new List<int[]>());
                    LGroups[count].Add(randomPermutationPool[ordered.Key]);
                    possibleIndexes.Remove(ordered.Key);
                }
                else
                    break;
                count++;
            }

            /*Summed accros selection*/
            while (true)
            {
                double minMutualInfo = Double.MaxValue;
                int permIndex = -1;
                int lGroupIndex = -1;
                foreach (int permutationIndex in possibleIndexes)
                {
                    int groupcount = 0;
                    foreach (KeyValuePair<int, List<int[]>> group in LGroups)
                    {
                        /*Check if there is space in set G of L, for a new permutation added to B Keys*/
                        if (group.Value.Count >= bKeysPerTable)
                        {
                            groupcount++;
                            continue;
                        }
                        double totalMinMutualInfo = 0;
                        foreach (int[] groupMember in group.Value)
                            totalMinMutualInfo += SignalUtils.MutualInformation(randomPermutationPool[permutationIndex], groupMember);

                        /*Actual summed accross selection*/
                        if (minMutualInfo > totalMinMutualInfo)
                        {
                            minMutualInfo = totalMinMutualInfo;
                            permIndex = permutationIndex;
                            lGroupIndex = groupcount;
                        }
                        groupcount++;
                    }
                }
                if (minMutualInfo == Double.MaxValue && permIndex == -1 && lGroupIndex == -1)
                    break;
                LGroups[lGroupIndex].Add(randomPermutationPool[permIndex]);
                possibleIndexes.Remove(permIndex);
            }
            return LGroups;
        }

        #endregion
    }
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The MIT License


Written By
Software Developer
Moldova (Republic of) Moldova (Republic of)
Interested in computer science, math, research, and everything that relates to innovation. Fan of agnostic programming, don't mind developing under any platform/framework if it explores interesting topics. In search of a better programming paradigm.

Comments and Discussions