Click here to Skip to main content
15,893,381 members
Articles / Mobile Apps / Windows Phone 7

Windows Phone: Are you Game? Part 1

Rate me:
Please Sign up or sign in to vote.
4.77/5 (18 votes)
12 Nov 2011CPOL9 min read 46.3K   693   36  
Introduction to XNA game development for Windows Phone - Includes XNAImage, image manipulation for XNA
/*
* Farseer Physics Engine based on Box2D.XNA port:
* Copyright (c) 2010 Ian Qvist
* 
* Box2D.XNA port of Box2D:
* Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
*
* Original source Box2D:
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com 
* 
* This software is provided 'as-is', without any express or implied 
* warranty.  In no event will the authors be held liable for any damages 
* arising from the use of this software. 
* Permission is granted to anyone to use this software for any purpose, 
* including commercial applications, and to alter it and redistribute it 
* freely, subject to the following restrictions: 
* 1. The origin of this software must not be misrepresented; you must not 
* claim that you wrote the original software. If you use this software 
* in a product, an acknowledgment in the product documentation would be 
* appreciated but is not required. 
* 2. Altered source versions must be plainly marked as such, and must not be 
* misrepresented as being the original software. 
* 3. This notice may not be removed or altered from any source distribution. 
*/

using System.Diagnostics;
using FarseerPhysics.Common;
using FarseerPhysics.Common.Decomposition;
using Microsoft.Xna.Framework;

namespace FarseerPhysics.Collision.Shapes
{
    /// <summary>
    /// Represents a simple non-selfintersecting convex polygon.
    /// If you want to have concave polygons, you will have to use the <see cref="BayazitDecomposer"/> or the <see cref="EarclipDecomposer"/>
    /// to decompose the concave polygon into 2 or more convex polygons.
    /// </summary>
    public class PolygonShape : Shape
    {
        public Vertices Normals;
        public Vertices Vertices;

        /// <summary>
        /// Initializes a new instance of the <see cref="PolygonShape"/> class.
        /// </summary>
        /// <param name="vertices">The vertices.</param>
        /// <param name="density">The density.</param>
        public PolygonShape(Vertices vertices, float density)
            : base(density)
        {
            ShapeType = ShapeType.Polygon;
            _radius = Settings.PolygonRadius;

            Set(vertices);
        }

        public PolygonShape(float density)
            : base(density)
        {
            ShapeType = ShapeType.Polygon;
            _radius = Settings.PolygonRadius;
            Normals = new Vertices();
            Vertices = new Vertices();
        }

        internal PolygonShape()
            : base(0)
        {
            ShapeType = ShapeType.Polygon;
            _radius = Settings.PolygonRadius;
            Normals = new Vertices();
            Vertices = new Vertices();
        }

        public override int ChildCount
        {
            get { return 1; }
        }

        public override Shape Clone()
        {
            PolygonShape clone = new PolygonShape();
            clone.ShapeType = ShapeType;
            clone._radius = _radius;
            clone._density = _density;

            if (Settings.ConserveMemory)
            {
                clone.Vertices = Vertices;
                clone.Normals = Normals;
            }
            else
            {
                clone.Vertices = new Vertices(Vertices);
                clone.Normals = new Vertices(Normals);
            }

            clone.MassData = MassData;
            return clone;
        }

        /// <summary>
        /// Copy vertices. This assumes the vertices define a convex polygon.
        /// It is assumed that the exterior is the the right of each edge.
        /// </summary>
        /// <param name="vertices">The vertices.</param>
        public void Set(Vertices vertices)
        {
            Debug.Assert(vertices.Count >= 3 && vertices.Count <= Settings.MaxPolygonVertices);

            if (Settings.ConserveMemory)
                Vertices = vertices;
            else
                // Copy vertices.
                Vertices = new Vertices(vertices);

            Normals = new Vertices(vertices.Count);

            // Compute normals. Ensure the edges have non-zero length.
            for (int i = 0; i < vertices.Count; ++i)
            {
                int i1 = i;
                int i2 = i + 1 < vertices.Count ? i + 1 : 0;
                Vector2 edge = Vertices[i2] - Vertices[i1];
                Debug.Assert(edge.LengthSquared() > Settings.Epsilon * Settings.Epsilon);

                Vector2 temp = new Vector2(edge.Y, -edge.X);
                temp.Normalize();
                Normals.Add(temp);
            }

#if DEBUG
            // Ensure the polygon is convex and the interior
            // is to the left of each edge.
            for (int i = 0; i < Vertices.Count; ++i)
            {
                int i1 = i;
                int i2 = i + 1 < Vertices.Count ? i + 1 : 0;
                Vector2 edge = Vertices[i2] - Vertices[i1];

                for (int j = 0; j < vertices.Count; ++j)
                {
                    // Don't check vertices on the current edge.
                    if (j == i1 || j == i2)
                    {
                        continue;
                    }

                    Vector2 r = Vertices[j] - Vertices[i1];

                    // Your polygon is non-convex (it has an indentation) or
                    // has colinear edges.
                    float s = edge.X * r.Y - edge.Y * r.X;

                    Debug.Assert(s > 0.0f);
                }
            }
#endif

            // Compute the polygon mass data
            ComputeProperties();
        }

        /// <summary>
        /// Compute the mass properties of this shape using its dimensions and density.
        /// The inertia tensor is computed about the local origin, not the centroid.
        /// </summary>
        public override void ComputeProperties()
        {
            // Polygon mass, centroid, and inertia.
            // Let rho be the polygon density in mass per unit area.
            // Then:
            // mass = rho * int(dA)
            // centroid.X = (1/mass) * rho * int(x * dA)
            // centroid.Y = (1/mass) * rho * int(y * dA)
            // I = rho * int((x*x + y*y) * dA)
            //
            // We can compute these integrals by summing all the integrals
            // for each triangle of the polygon. To evaluate the integral
            // for a single triangle, we make a change of variables to
            // the (u,v) coordinates of the triangle:
            // x = x0 + e1x * u + e2x * v
            // y = y0 + e1y * u + e2y * v
            // where 0 <= u && 0 <= v && u + v <= 1.
            //
            // We integrate u from [0,1-v] and then v from [0,1].
            // We also need to use the Jacobian of the transformation:
            // D = cross(e1, e2)
            //
            // Simplification: triangle centroid = (1/3) * (p1 + p2 + p3)
            //
            // The rest of the derivation is handled by computer algebra.

            Debug.Assert(Vertices.Count >= 3);

            if (_density <= 0)
                return;

            Vector2 center = Vector2.Zero;
            float area = 0.0f;
            float I = 0.0f;

            // pRef is the reference point for forming triangles.
            // It's location doesn't change the result (except for rounding error).
            Vector2 pRef = Vector2.Zero;

#if false
    // This code would put the reference point inside the polygon.
	        for (int i = 0; i < count; ++i)
	        {
		        pRef += vs[i];
	        }
	        pRef *= 1.0f / count;
#endif

            const float inv3 = 1.0f / 3.0f;

            for (int i = 0; i < Vertices.Count; ++i)
            {
                // Triangle vertices.
                Vector2 p1 = pRef;
                Vector2 p2 = Vertices[i];
                Vector2 p3 = i + 1 < Vertices.Count ? Vertices[i + 1] : Vertices[0];

                Vector2 e1 = p2 - p1;
                Vector2 e2 = p3 - p1;

                float d;
                MathUtils.Cross(ref e1, ref e2, out d);

                float triangleArea = 0.5f * d;
                area += triangleArea;

                // Area weighted centroid
                center += triangleArea * inv3 * (p1 + p2 + p3);

                float px = p1.X, py = p1.Y;
                float ex1 = e1.X, ey1 = e1.Y;
                float ex2 = e2.X, ey2 = e2.Y;

                float intx2 = inv3 * (0.25f * (ex1 * ex1 + ex2 * ex1 + ex2 * ex2) + (px * ex1 + px * ex2)) +
                              0.5f * px * px;
                float inty2 = inv3 * (0.25f * (ey1 * ey1 + ey2 * ey1 + ey2 * ey2) + (py * ey1 + py * ey2)) +
                              0.5f * py * py;

                I += d * (intx2 + inty2);
            }

            //The area is too small for the engine to handle.
            Debug.Assert(area > Settings.Epsilon);

            // We save the area
            MassData.Area = area;

            // Total mass
            MassData.Mass = _density * area;

            // Center of mass
            center *= 1.0f / area;
            MassData.Centroid = center;

            // Inertia tensor relative to the local origin.
            MassData.Inertia = _density * I;
        }

        /// <summary>
        /// Build vertices to represent an axis-aligned box.
        /// </summary>
        /// <param name="halfWidth">The half-width.</param>
        /// <param name="halfHeight">The half-height.</param>
        public void SetAsBox(float halfWidth, float halfHeight)
        {
            Set(PolygonTools.CreateRectangle(halfWidth, halfHeight));
        }

        /// <summary>
        /// Build vertices to represent an oriented box.
        /// </summary>
        /// <param name="halfWidth">The half-width..</param>
        /// <param name="halfHeight">The half-height.</param>
        /// <param name="center">The center of the box in local coordinates.</param>
        /// <param name="angle">The rotation of the box in local coordinates.</param>
        public void SetAsBox(float halfWidth, float halfHeight, Vector2 center, float angle)
        {
            Set(PolygonTools.CreateRectangle(halfWidth, halfHeight, center, angle));
        }

        /// <summary>
        /// Test a point for containment in this shape. This only works for convex shapes.
        /// </summary>
        /// <param name="transform">The shape world transform.</param>
        /// <param name="point">a point in world coordinates.</param>
        /// <returns>True if the point is inside the shape</returns>
        public override bool TestPoint(ref Transform transform, ref Vector2 point)
        {
            Vector2 pLocal = MathUtils.MultiplyT(ref transform.R, point - transform.Position);

            for (int i = 0; i < Vertices.Count; ++i)
            {
                float dot = Vector2.Dot(Normals[i], pLocal - Vertices[i]);
                if (dot > 0.0f)
                {
                    return false;
                }
            }

            return true;
        }

        /// <summary>
        /// Cast a ray against a child shape.
        /// </summary>
        /// <param name="output">The ray-cast results.</param>
        /// <param name="input">The ray-cast input parameters.</param>
        /// <param name="transform">The transform to be applied to the shape.</param>
        /// <param name="childIndex">The child shape index.</param>
        /// <returns>True if the ray-cast hits the shape</returns>
        public override bool RayCast(out RayCastOutput output, ref RayCastInput input, ref Transform transform,
                                     int childIndex)
        {
            output = new RayCastOutput();

            // Put the ray into the polygon's frame of reference.
            Vector2 p1 = MathUtils.MultiplyT(ref transform.R, input.Point1 - transform.Position);
            Vector2 p2 = MathUtils.MultiplyT(ref transform.R, input.Point2 - transform.Position);
            Vector2 d = p2 - p1;

            float lower = 0.0f, upper = input.MaxFraction;

            int index = -1;

            for (int i = 0; i < Vertices.Count; ++i)
            {
                // p = p1 + a * d
                // dot(normal, p - v) = 0
                // dot(normal, p1 - v) + a * dot(normal, d) = 0
                float numerator = Vector2.Dot(Normals[i], Vertices[i] - p1);
                float denominator = Vector2.Dot(Normals[i], d);

                if (denominator == 0.0f)
                {
                    if (numerator < 0.0f)
                    {
                        return false;
                    }
                }
                else
                {
                    // Note: we want this predicate without division:
                    // lower < numerator / denominator, where denominator < 0
                    // Since denominator < 0, we have to flip the inequality:
                    // lower < numerator / denominator <==> denominator * lower > numerator.
                    if (denominator < 0.0f && numerator < lower * denominator)
                    {
                        // Increase lower.
                        // The segment enters this half-space.
                        lower = numerator / denominator;
                        index = i;
                    }
                    else if (denominator > 0.0f && numerator < upper * denominator)
                    {
                        // Decrease upper.
                        // The segment exits this half-space.
                        upper = numerator / denominator;
                    }
                }

                // The use of epsilon here causes the assert on lower to trip
                // in some cases. Apparently the use of epsilon was to make edge
                // shapes work, but now those are handled separately.
                //if (upper < lower - b2_epsilon)
                if (upper < lower)
                {
                    return false;
                }
            }

            Debug.Assert(0.0f <= lower && lower <= input.MaxFraction);

            if (index >= 0)
            {
                output.Fraction = lower;
                output.Normal = MathUtils.Multiply(ref transform.R, Normals[index]);
                return true;
            }

            return false;
        }

        /// <summary>
        /// Given a transform, compute the associated axis aligned bounding box for a child shape.
        /// </summary>
        /// <param name="aabb">The aabb results.</param>
        /// <param name="transform">The world transform of the shape.</param>
        /// <param name="childIndex">The child shape index.</param>
        public override void ComputeAABB(out AABB aabb, ref Transform transform, int childIndex)
        {
            Vector2 lower = MathUtils.Multiply(ref transform, Vertices[0]);
            Vector2 upper = lower;

            for (int i = 1; i < Vertices.Count; ++i)
            {
                Vector2 v = MathUtils.Multiply(ref transform, Vertices[i]);
                lower = Vector2.Min(lower, v);
                upper = Vector2.Max(upper, v);
            }

            Vector2 r = new Vector2(Radius, Radius);
            aabb.LowerBound = lower - r;
            aabb.UpperBound = upper + r;
        }

        public bool CompareTo(PolygonShape shape)
        {
            if (Vertices.Count != shape.Vertices.Count)
                return false;

            for (int i = 0; i < Vertices.Count; i++)
            {
                if (Vertices[i] != shape.Vertices[i])
                    return false;
            }

            return (Radius == shape.Radius &&
                    MassData == shape.MassData);
        }

        public override float ComputeSubmergedArea(Vector2 normal, float offset, Transform xf, out Vector2 sc)
        {
            sc = Vector2.Zero;

            //Transform plane into shape co-ordinates
            Vector2 normalL = MathUtils.MultiplyT(ref xf.R, normal);
            float offsetL = offset - Vector2.Dot(normal, xf.Position);

            float[] depths = new float[Settings.MaxPolygonVertices];
            int diveCount = 0;
            int intoIndex = -1;
            int outoIndex = -1;

            bool lastSubmerged = false;
            int i;
            for (i = 0; i < Vertices.Count; i++)
            {
                depths[i] = Vector2.Dot(normalL, Vertices[i]) - offsetL;
                bool isSubmerged = depths[i] < -Settings.Epsilon;
                if (i > 0)
                {
                    if (isSubmerged)
                    {
                        if (!lastSubmerged)
                        {
                            intoIndex = i - 1;
                            diveCount++;
                        }
                    }
                    else
                    {
                        if (lastSubmerged)
                        {
                            outoIndex = i - 1;
                            diveCount++;
                        }
                    }
                }
                lastSubmerged = isSubmerged;
            }
            switch (diveCount)
            {
                case 0:
                    if (lastSubmerged)
                    {
                        //Completely submerged
                        sc = MathUtils.Multiply(ref xf, MassData.Centroid);
                        return MassData.Mass / Density;
                    }
                    else
                    {
                        //Completely dry
                        return 0;
                    }
                    break;
                case 1:
                    if (intoIndex == -1)
                    {
                        intoIndex = Vertices.Count - 1;
                    }
                    else
                    {
                        outoIndex = Vertices.Count - 1;
                    }
                    break;
            }
            int intoIndex2 = (intoIndex + 1) % Vertices.Count;
            int outoIndex2 = (outoIndex + 1) % Vertices.Count;

            float intoLambda = (0 - depths[intoIndex]) / (depths[intoIndex2] - depths[intoIndex]);
            float outoLambda = (0 - depths[outoIndex]) / (depths[outoIndex2] - depths[outoIndex]);

            Vector2 intoVec = new Vector2(
                Vertices[intoIndex].X * (1 - intoLambda) + Vertices[intoIndex2].X * intoLambda,
                Vertices[intoIndex].Y * (1 - intoLambda) + Vertices[intoIndex2].Y * intoLambda);
            Vector2 outoVec = new Vector2(
                Vertices[outoIndex].X * (1 - outoLambda) + Vertices[outoIndex2].X * outoLambda,
                Vertices[outoIndex].Y * (1 - outoLambda) + Vertices[outoIndex2].Y * outoLambda);

            //Initialize accumulator
            float area = 0;
            Vector2 center = new Vector2(0, 0);
            Vector2 p2 = Vertices[intoIndex2];
            Vector2 p3;

            float k_inv3 = 1.0f / 3.0f;

            //An awkward loop from intoIndex2+1 to outIndex2
            i = intoIndex2;
            while (i != outoIndex2)
            {
                i = (i + 1) % Vertices.Count;
                if (i == outoIndex2)
                    p3 = outoVec;
                else
                    p3 = Vertices[i];
                //Add the triangle formed by intoVec,p2,p3
                {
                    Vector2 e1 = p2 - intoVec;
                    Vector2 e2 = p3 - intoVec;

                    float D = MathUtils.Cross(e1, e2);

                    float triangleArea = 0.5f * D;

                    area += triangleArea;

                    // Area weighted centroid
                    center += triangleArea * k_inv3 * (intoVec + p2 + p3);
                }
                //
                p2 = p3;
            }

            //Normalize and transform centroid
            center *= 1.0f / area;

            sc = MathUtils.Multiply(ref xf, center);

            return area;
        }
    }
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Architect Sea Surveillance AS
Norway Norway
Chief Architect - Sea Surveillance AS.

Specializing in integrated operations and high performance computing solutions.

I’ve been fooling around with computers since the early eighties, I’ve even done work on CP/M and MP/M.

Wrote my first “real” program on a BBC micro model B based on a series in a magazine at that time. It was fun and I got hooked on this thing called programming ...

A few Highlights:

  • High performance application server development
  • Model Driven Architecture and Code generators
  • Real-Time Distributed Solutions
  • C, C++, C#, Java, TSQL, PL/SQL, Delphi, ActionScript, Perl, Rexx
  • Microsoft SQL Server, Oracle RDBMS, IBM DB2, PostGreSQL
  • AMQP, Apache qpid, RabbitMQ, Microsoft Message Queuing, IBM WebSphereMQ, Oracle TuxidoMQ
  • Oracle WebLogic, IBM WebSphere
  • Corba, COM, DCE, WCF
  • AspenTech InfoPlus.21(IP21), OsiSoft PI


More information about what I do for a living can be found at: harlinn.com or LinkedIn

You can contact me at espen@harlinn.no

Comments and Discussions