Click here to Skip to main content
15,891,908 members
Articles / Desktop Programming / MFC

MsAccess MdbTools with MFC and .NET

Rate me:
Please Sign up or sign in to vote.
4.82/5 (9 votes)
13 Jan 2012LGPL310 min read 69.2K   9.9K   49  
Viewer of MsAccess databases directly from MFC and .NET - Repair corrupt databases
/* GLIB - Library of useful routines for C programming
 * Copyright (C) 1995-1997  Peter Mattis, Spencer Kimball and Josh MacDonald
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

/*
 * Modified by the GLib Team and others 1997-2000.  See the AUTHORS
 * file for a list of people on the GLib Team.  See the ChangeLog
 * files for a list of changes.  These files are distributed with
 * GLib at ftp://ftp.gtk.org/pub/gtk/. 
 */

/* 
 * MT safe
 */

#include "config.h"

#include "gmem.h"

#include <stdlib.h>
#include <string.h>
#include <signal.h>

#include "gbacktrace.h"
#include "gtestutils.h"
#include "gthread.h"
#include "glib_trace.h"


#define MEM_PROFILE_TABLE_SIZE 4096


/* notes on macros:
 * having G_DISABLE_CHECKS defined disables use of glib_mem_profiler_table and
 * g_mem_profile().
 * REALLOC_0_WORKS is defined if g_realloc (NULL, x) works.
 * SANE_MALLOC_PROTOS is defined if the systems malloc() and friends functions
 * match the corresponding GLib prototypes, keep configure.ac and gmem.h in sync here.
 * g_mem_gc_friendly is TRUE, freed memory should be 0-wiped.
 */

/* --- prototypes --- */
static gboolean g_mem_initialized = FALSE;
static void     g_mem_init_nomessage (void);


/* --- malloc wrappers --- */
#ifndef	REALLOC_0_WORKS
static gpointer
standard_realloc (gpointer mem,
		  gsize    n_bytes)
{
  if (!mem)
    return malloc (n_bytes);
  else
    return realloc (mem, n_bytes);
}
#endif	/* !REALLOC_0_WORKS */

#ifdef SANE_MALLOC_PROTOS
#  define standard_malloc	malloc
#  ifdef REALLOC_0_WORKS
#    define standard_realloc	realloc
#  endif /* REALLOC_0_WORKS */
#  define standard_free		free
#  define standard_calloc	calloc
#  define standard_try_malloc	malloc
#  define standard_try_realloc	realloc
#else	/* !SANE_MALLOC_PROTOS */
static gpointer
standard_malloc (gsize n_bytes)
{
  return malloc (n_bytes);
}
#  ifdef REALLOC_0_WORKS
static gpointer
standard_realloc (gpointer mem,
		  gsize    n_bytes)
{
  return realloc (mem, n_bytes);
}
#  endif /* REALLOC_0_WORKS */
static void
standard_free (gpointer mem)
{
  free (mem);
}
static gpointer
standard_calloc (gsize n_blocks,
		 gsize n_bytes)
{
  return calloc (n_blocks, n_bytes);
}
#define	standard_try_malloc	standard_malloc
#define	standard_try_realloc	standard_realloc
#endif	/* !SANE_MALLOC_PROTOS */


/* --- variables --- */
static GMemVTable glib_mem_vtable = {
  standard_malloc,
  standard_realloc,
  standard_free,
  standard_calloc,
  standard_try_malloc,
  standard_try_realloc,
};

/**
 * SECTION:memory
 * @Short_Description: general memory-handling
 * @Title: Memory Allocation
 * 
 * These functions provide support for allocating and freeing memory.
 * 
 * <note>
 * If any call to allocate memory fails, the application is terminated.
 * This also means that there is no need to check if the call succeeded.
 * </note>
 * 
 * <note>
 * It's important to match g_malloc() with g_free(), plain malloc() with free(),
 * and (if you're using C++) new with delete and new[] with delete[]. Otherwise
 * bad things can happen, since these allocators may use different memory
 * pools (and new/delete call constructors and destructors). See also
 * g_mem_set_vtable().
 * </note>
 */

/* --- functions --- */
/**
 * g_malloc:
 * @n_bytes: the number of bytes to allocate
 * 
 * Allocates @n_bytes bytes of memory.
 * If @n_bytes is 0 it returns %NULL.
 * 
 * Returns: a pointer to the allocated memory
 */
gpointer
g_malloc (gsize n_bytes)
{
  if (G_UNLIKELY (!g_mem_initialized))
    g_mem_init_nomessage();
  if (G_LIKELY (n_bytes))
    {
      gpointer mem;

      mem = glib_mem_vtable.malloc (n_bytes);
      TRACE (GLIB_MEM_ALLOC((void*) mem, (unsigned int) n_bytes, 0, 0));
      if (mem)
	return mem;

      g_error ("%s: failed to allocate %"G_GSIZE_FORMAT" bytes",
               G_STRLOC, n_bytes);
    }

  TRACE(GLIB_MEM_ALLOC((void*) NULL, (int) n_bytes, 0, 0));

  return NULL;
}

/**
 * g_malloc0:
 * @n_bytes: the number of bytes to allocate
 * 
 * Allocates @n_bytes bytes of memory, initialized to 0's.
 * If @n_bytes is 0 it returns %NULL.
 * 
 * Returns: a pointer to the allocated memory
 */
gpointer
g_malloc0 (gsize n_bytes)
{
  if (G_UNLIKELY (!g_mem_initialized))
    g_mem_init_nomessage();
  if (G_LIKELY (n_bytes))
    {
      gpointer mem;

      mem = glib_mem_vtable.calloc (1, n_bytes);
      TRACE (GLIB_MEM_ALLOC((void*) mem, (unsigned int) n_bytes, 1, 0));
      if (mem)
	return mem;

      g_error ("%s: failed to allocate %"G_GSIZE_FORMAT" bytes",
               G_STRLOC, n_bytes);
    }

  TRACE(GLIB_MEM_ALLOC((void*) NULL, (int) n_bytes, 1, 0));

  return NULL;
}

/**
 * g_realloc:
 * @mem: the memory to reallocate
 * @n_bytes: new size of the memory in bytes
 * 
 * Reallocates the memory pointed to by @mem, so that it now has space for
 * @n_bytes bytes of memory. It returns the new address of the memory, which may
 * have been moved. @mem may be %NULL, in which case it's considered to
 * have zero-length. @n_bytes may be 0, in which case %NULL will be returned
 * and @mem will be freed unless it is %NULL.
 * 
 * Returns: the new address of the allocated memory
 */
gpointer
g_realloc (gpointer mem,
	   gsize    n_bytes)
{
  gpointer newmem;

  if (G_UNLIKELY (!g_mem_initialized))
    g_mem_init_nomessage();
  if (G_LIKELY (n_bytes))
    {
      newmem = glib_mem_vtable.realloc (mem, n_bytes);
      TRACE (GLIB_MEM_REALLOC((void*) newmem, (void*)mem, (unsigned int) n_bytes, 0));
      if (newmem)
	return newmem;

      g_error ("%s: failed to allocate %"G_GSIZE_FORMAT" bytes",
               G_STRLOC, n_bytes);
    }

  if (mem)
    glib_mem_vtable.free (mem);

  TRACE (GLIB_MEM_REALLOC((void*) NULL, (void*)mem, 0, 0));

  return NULL;
}

/**
 * g_free:
 * @mem: the memory to free
 * 
 * Frees the memory pointed to by @mem.
 * If @mem is %NULL it simply returns.
 */
void
g_free (gpointer mem)
{
  if (G_UNLIKELY (!g_mem_initialized))
    g_mem_init_nomessage();
  if (G_LIKELY (mem))
    glib_mem_vtable.free (mem);
  TRACE(GLIB_MEM_FREE((void*) mem));
}

/**
 * g_try_malloc:
 * @n_bytes: number of bytes to allocate.
 * 
 * Attempts to allocate @n_bytes, and returns %NULL on failure.
 * Contrast with g_malloc(), which aborts the program on failure.
 * 
 * Returns: the allocated memory, or %NULL.
 */
gpointer
g_try_malloc (gsize n_bytes)
{
  gpointer mem;

  if (G_UNLIKELY (!g_mem_initialized))
    g_mem_init_nomessage();
  if (G_LIKELY (n_bytes))
    mem = glib_mem_vtable.try_malloc (n_bytes);
  else
    mem = NULL;

  TRACE (GLIB_MEM_ALLOC((void*) mem, (unsigned int) n_bytes, 0, 1));

  return mem;
}

/**
 * g_try_malloc0:
 * @n_bytes: number of bytes to allocate
 * 
 * Attempts to allocate @n_bytes, initialized to 0's, and returns %NULL on
 * failure. Contrast with g_malloc0(), which aborts the program on failure.
 * 
 * Since: 2.8
 * Returns: the allocated memory, or %NULL
 */
gpointer
g_try_malloc0 (gsize n_bytes)
{
  gpointer mem;

  if (G_UNLIKELY (!g_mem_initialized))
    g_mem_init_nomessage();
  if (G_LIKELY (n_bytes))
    mem = glib_mem_vtable.try_malloc (n_bytes);
  else
    mem = NULL;

  if (mem)
    memset (mem, 0, n_bytes);

  return mem;
}

/**
 * g_try_realloc:
 * @mem: previously-allocated memory, or %NULL.
 * @n_bytes: number of bytes to allocate.
 * 
 * Attempts to realloc @mem to a new size, @n_bytes, and returns %NULL
 * on failure. Contrast with g_realloc(), which aborts the program
 * on failure. If @mem is %NULL, behaves the same as g_try_malloc().
 * 
 * Returns: the allocated memory, or %NULL.
 */
gpointer
g_try_realloc (gpointer mem,
	       gsize    n_bytes)
{
  gpointer newmem;

  if (G_UNLIKELY (!g_mem_initialized))
    g_mem_init_nomessage();
  if (G_LIKELY (n_bytes))
    newmem = glib_mem_vtable.try_realloc (mem, n_bytes);
  else
    {
      newmem = NULL;
      if (mem)
	glib_mem_vtable.free (mem);
    }

  TRACE (GLIB_MEM_REALLOC((void*) newmem, (void*)mem, (unsigned int) n_bytes, 1));

  return newmem;
}


#define SIZE_OVERFLOWS(a,b) (G_UNLIKELY ((b) > 0 && (a) > G_MAXSIZE / (b)))

/**
 * g_malloc_n:
 * @n_blocks: the number of blocks to allocate
 * @n_block_bytes: the size of each block in bytes
 * 
 * This function is similar to g_malloc(), allocating (@n_blocks * @n_block_bytes) bytes,
 * but care is taken to detect possible overflow during multiplication.
 * 
 * Since: 2.24
 * Returns: a pointer to the allocated memory
 */
gpointer
g_malloc_n (gsize n_blocks,
	    gsize n_block_bytes)
{
  if (SIZE_OVERFLOWS (n_blocks, n_block_bytes))
    {
      if (G_UNLIKELY (!g_mem_initialized))
	g_mem_init_nomessage();

      g_error ("%s: overflow allocating %"G_GSIZE_FORMAT"*%"G_GSIZE_FORMAT" bytes",
               G_STRLOC, n_blocks, n_block_bytes);
    }

  return g_malloc (n_blocks * n_block_bytes);
}

/**
 * g_malloc0_n:
 * @n_blocks: the number of blocks to allocate
 * @n_block_bytes: the size of each block in bytes
 * 
 * This function is similar to g_malloc0(), allocating (@n_blocks * @n_block_bytes) bytes,
 * but care is taken to detect possible overflow during multiplication.
 * 
 * Since: 2.24
 * Returns: a pointer to the allocated memory
 */
gpointer
g_malloc0_n (gsize n_blocks,
	     gsize n_block_bytes)
{
  if (SIZE_OVERFLOWS (n_blocks, n_block_bytes))
    {
      if (G_UNLIKELY (!g_mem_initialized))
	g_mem_init_nomessage();

      g_error ("%s: overflow allocating %"G_GSIZE_FORMAT"*%"G_GSIZE_FORMAT" bytes",
               G_STRLOC, n_blocks, n_block_bytes);
    }

  return g_malloc0 (n_blocks * n_block_bytes);
}

/**
 * g_realloc_n:
 * @mem: the memory to reallocate
 * @n_blocks: the number of blocks to allocate
 * @n_block_bytes: the size of each block in bytes
 * 
 * This function is similar to g_realloc(), allocating (@n_blocks * @n_block_bytes) bytes,
 * but care is taken to detect possible overflow during multiplication.
 * 
 * Since: 2.24
 * Returns: the new address of the allocated memory
 */
gpointer
g_realloc_n (gpointer mem,
	     gsize    n_blocks,
	     gsize    n_block_bytes)
{
  if (SIZE_OVERFLOWS (n_blocks, n_block_bytes))
    {
      if (G_UNLIKELY (!g_mem_initialized))
	g_mem_init_nomessage();

      g_error ("%s: overflow allocating %"G_GSIZE_FORMAT"*%"G_GSIZE_FORMAT" bytes",
               G_STRLOC, n_blocks, n_block_bytes);
    }

  return g_realloc (mem, n_blocks * n_block_bytes);
}

/**
 * g_try_malloc_n:
 * @n_blocks: the number of blocks to allocate
 * @n_block_bytes: the size of each block in bytes
 * 
 * This function is similar to g_try_malloc(), allocating (@n_blocks * @n_block_bytes) bytes,
 * but care is taken to detect possible overflow during multiplication.
 * 
 * Since: 2.24
 * Returns: the allocated memory, or %NULL.
 */
gpointer
g_try_malloc_n (gsize n_blocks,
		gsize n_block_bytes)
{
  if (SIZE_OVERFLOWS (n_blocks, n_block_bytes))
    return NULL;

  return g_try_malloc (n_blocks * n_block_bytes);
}

/**
 * g_try_malloc0_n:
 * @n_blocks: the number of blocks to allocate
 * @n_block_bytes: the size of each block in bytes
 * 
 * This function is similar to g_try_malloc0(), allocating (@n_blocks * @n_block_bytes) bytes,
 * but care is taken to detect possible overflow during multiplication.
 * 
 * Since: 2.24
 * Returns: the allocated memory, or %NULL
 */
gpointer
g_try_malloc0_n (gsize n_blocks,
		 gsize n_block_bytes)
{
  if (SIZE_OVERFLOWS (n_blocks, n_block_bytes))
    return NULL;

  return g_try_malloc0 (n_blocks * n_block_bytes);
}

/**
 * g_try_realloc_n:
 * @mem: previously-allocated memory, or %NULL.
 * @n_blocks: the number of blocks to allocate
 * @n_block_bytes: the size of each block in bytes
 * 
 * This function is similar to g_try_realloc(), allocating (@n_blocks * @n_block_bytes) bytes,
 * but care is taken to detect possible overflow during multiplication.
 * 
 * Since: 2.24
 * Returns: the allocated memory, or %NULL.
 */
gpointer
g_try_realloc_n (gpointer mem,
		 gsize    n_blocks,
		 gsize    n_block_bytes)
{
  if (SIZE_OVERFLOWS (n_blocks, n_block_bytes))
    return NULL;

  return g_try_realloc (mem, n_blocks * n_block_bytes);
}



static gpointer
fallback_calloc (gsize n_blocks,
		 gsize n_block_bytes)
{
  gsize l = n_blocks * n_block_bytes;
  gpointer mem = glib_mem_vtable.malloc (l);

  if (mem)
    memset (mem, 0, l);

  return mem;
}

static gboolean vtable_set = FALSE;

/**
 * g_mem_is_system_malloc
 * 
 * Checks whether the allocator used by g_malloc() is the system's
 * malloc implementation. If it returns %TRUE memory allocated with
 * malloc() can be used interchangeable with memory allocated using g_malloc().
 * This function is useful for avoiding an extra copy of allocated memory returned
 * by a non-GLib-based API.
 *
 * A different allocator can be set using g_mem_set_vtable().
 *
 * Return value: if %TRUE, malloc() and g_malloc() can be mixed.
 **/
gboolean
g_mem_is_system_malloc (void)
{
  return !vtable_set;
}

/**
 * g_mem_set_vtable:
 * @vtable: table of memory allocation routines.
 * 
 * Sets the #GMemVTable to use for memory allocation. You can use this to provide
 * custom memory allocation routines. <emphasis>This function must be called
 * before using any other GLib functions.</emphasis> The @vtable only needs to
 * provide malloc(), realloc(), and free() functions; GLib can provide default
 * implementations of the others. The malloc() and realloc() implementations
 * should return %NULL on failure, GLib will handle error-checking for you.
 * @vtable is copied, so need not persist after this function has been called.
 */
void
g_mem_set_vtable (GMemVTable *vtable)
{
  if (!vtable_set)
    {
      if (vtable->malloc && vtable->realloc && vtable->free)
	{
	  glib_mem_vtable.malloc = vtable->malloc;
	  glib_mem_vtable.realloc = vtable->realloc;
	  glib_mem_vtable.free = vtable->free;
	  glib_mem_vtable.calloc = vtable->calloc ? vtable->calloc : fallback_calloc;
	  glib_mem_vtable.try_malloc = vtable->try_malloc ? vtable->try_malloc : glib_mem_vtable.malloc;
	  glib_mem_vtable.try_realloc = vtable->try_realloc ? vtable->try_realloc : glib_mem_vtable.realloc;
	  vtable_set = TRUE;
	}
      else
	g_warning (G_STRLOC ": memory allocation vtable lacks one of malloc(), realloc() or free()");
    }
  else
    g_warning (G_STRLOC ": memory allocation vtable can only be set once at startup");
}


/* --- memory profiling and checking --- */
#ifdef	G_DISABLE_CHECKS
/**
 * glib_mem_profiler_table:
 * 
 * A #GMemVTable containing profiling variants of the memory
 * allocation functions. Use them together with g_mem_profile()
 * in order to get information about the memory allocation pattern
 * of your program.
 */
GMemVTable *glib_mem_profiler_table = &glib_mem_vtable;
void
g_mem_profile (void)
{
}
#else	/* !G_DISABLE_CHECKS */
typedef enum {
  PROFILER_FREE		= 0,
  PROFILER_ALLOC	= 1,
  PROFILER_RELOC	= 2,
  PROFILER_ZINIT	= 4
} ProfilerJob;
static guint *profile_data = NULL;
static gsize profile_allocs = 0;
static gsize profile_zinit = 0;
static gsize profile_frees = 0;
static GMutex *gmem_profile_mutex = NULL;
#ifdef  G_ENABLE_DEBUG
static volatile gsize g_trap_free_size = 0;
static volatile gsize g_trap_realloc_size = 0;
static volatile gsize g_trap_malloc_size = 0;
#endif  /* G_ENABLE_DEBUG */

#define	PROFILE_TABLE(f1,f2,f3)   ( ( ((f3) << 2) | ((f2) << 1) | (f1) ) * (MEM_PROFILE_TABLE_SIZE + 1))

static void
profiler_log (ProfilerJob job,
	      gsize       n_bytes,
	      gboolean    success)
{
  g_mutex_lock (gmem_profile_mutex);
  if (!profile_data)
    {
      profile_data = standard_calloc ((MEM_PROFILE_TABLE_SIZE + 1) * 8, 
                                      sizeof (profile_data[0]));
      if (!profile_data)	/* memory system kiddin' me, eh? */
	{
	  g_mutex_unlock (gmem_profile_mutex);
	  return;
	}
    }

  if (n_bytes < MEM_PROFILE_TABLE_SIZE)
    profile_data[n_bytes + PROFILE_TABLE ((job & PROFILER_ALLOC) != 0,
                                          (job & PROFILER_RELOC) != 0,
                                          success != 0)] += 1;
  else
    profile_data[MEM_PROFILE_TABLE_SIZE + PROFILE_TABLE ((job & PROFILER_ALLOC) != 0,
                                                         (job & PROFILER_RELOC) != 0,
                                                         success != 0)] += 1;
  if (success)
    {
      if (job & PROFILER_ALLOC)
        {
          profile_allocs += n_bytes;
          if (job & PROFILER_ZINIT)
            profile_zinit += n_bytes;
        }
      else
        profile_frees += n_bytes;
    }
  g_mutex_unlock (gmem_profile_mutex);
}

static void
profile_print_locked (guint   *local_data,
		      gboolean success)
{
  gboolean need_header = TRUE;
  guint i;

  for (i = 0; i <= MEM_PROFILE_TABLE_SIZE; i++)
    {
      glong t_malloc = local_data[i + PROFILE_TABLE (1, 0, success)];
      glong t_realloc = local_data[i + PROFILE_TABLE (1, 1, success)];
      glong t_free = local_data[i + PROFILE_TABLE (0, 0, success)];
      glong t_refree = local_data[i + PROFILE_TABLE (0, 1, success)];
      
      if (!t_malloc && !t_realloc && !t_free && !t_refree)
	continue;
      else if (need_header)
	{
	  need_header = FALSE;
	  g_print (" blocks of | allocated  | freed      | allocated  | freed      | n_bytes   \n");
	  g_print ("  n_bytes  | n_times by | n_times by | n_times by | n_times by | remaining \n");
	  g_print ("           | malloc()   | free()     | realloc()  | realloc()  |           \n");
	  g_print ("===========|============|============|============|============|===========\n");
	}
      if (i < MEM_PROFILE_TABLE_SIZE)
	g_print ("%10u | %10ld | %10ld | %10ld | %10ld |%+11ld\n",
		 i, t_malloc, t_free, t_realloc, t_refree,
		 (t_malloc - t_free + t_realloc - t_refree) * i);
      else if (i >= MEM_PROFILE_TABLE_SIZE)
	g_print ("   >%6u | %10ld | %10ld | %10ld | %10ld |        ***\n",
		 i, t_malloc, t_free, t_realloc, t_refree);
    }
  if (need_header)
    g_print (" --- none ---\n");
}

/**
 * g_mem_profile:
 * @void:
 * 
 * Outputs a summary of memory usage.
 * 
 * It outputs the frequency of allocations of different sizes,
 * the total number of bytes which have been allocated,
 * the total number of bytes which have been freed,
 * and the difference between the previous two values, i.e. the number of bytes
 * still in use.
 * 
 * Note that this function will not output anything unless you have
 * previously installed the #glib_mem_profiler_table with g_mem_set_vtable().
 */

void
g_mem_profile (void)
{
  guint local_data[(MEM_PROFILE_TABLE_SIZE + 1) * 8 * sizeof (profile_data[0])];
  gsize local_allocs;
  gsize local_zinit;
  gsize local_frees;

  if (G_UNLIKELY (!g_mem_initialized))
    g_mem_init_nomessage();

  g_mutex_lock (gmem_profile_mutex);

  local_allocs = profile_allocs;
  local_zinit = profile_zinit;
  local_frees = profile_frees;

  if (!profile_data)
    {
      g_mutex_unlock (gmem_profile_mutex);
      return;
    }

  memcpy (local_data, profile_data, 
	  (MEM_PROFILE_TABLE_SIZE + 1) * 8 * sizeof (profile_data[0]));
  
  g_mutex_unlock (gmem_profile_mutex);

  g_print ("GLib Memory statistics (successful operations):\n");
  profile_print_locked (local_data, TRUE);
  g_print ("GLib Memory statistics (failing operations):\n");
  profile_print_locked (local_data, FALSE);
  g_print ("Total bytes: allocated=%"G_GSIZE_FORMAT", "
           "zero-initialized=%"G_GSIZE_FORMAT" (%.2f%%), "
           "freed=%"G_GSIZE_FORMAT" (%.2f%%), "
           "remaining=%"G_GSIZE_FORMAT"\n",
	   local_allocs,
	   local_zinit,
	   ((gdouble) local_zinit) / local_allocs * 100.0,
	   local_frees,
	   ((gdouble) local_frees) / local_allocs * 100.0,
	   local_allocs - local_frees);
}

static gpointer
profiler_try_malloc (gsize n_bytes)
{
  gsize *p;

#ifdef  G_ENABLE_DEBUG
  if (g_trap_malloc_size == n_bytes)
    G_BREAKPOINT ();
#endif  /* G_ENABLE_DEBUG */

  p = standard_malloc (sizeof (gsize) * 2 + n_bytes);

  if (p)
    {
      p[0] = 0;		/* free count */
      p[1] = n_bytes;	/* length */
      profiler_log (PROFILER_ALLOC, n_bytes, TRUE);
      p += 2;
    }
  else
    profiler_log (PROFILER_ALLOC, n_bytes, FALSE);
  
  return p;
}

static gpointer
profiler_malloc (gsize n_bytes)
{
  gpointer mem = profiler_try_malloc (n_bytes);

  if (!mem)
    g_mem_profile ();

  return mem;
}

static gpointer
profiler_calloc (gsize n_blocks,
		 gsize n_block_bytes)
{
  gsize l = n_blocks * n_block_bytes;
  gsize *p;

#ifdef  G_ENABLE_DEBUG
  if (g_trap_malloc_size == l)
    G_BREAKPOINT ();
#endif  /* G_ENABLE_DEBUG */
  
  p = standard_calloc (1, sizeof (gsize) * 2 + l);

  if (p)
    {
      p[0] = 0;		/* free count */
      p[1] = l;		/* length */
      profiler_log (PROFILER_ALLOC | PROFILER_ZINIT, l, TRUE);
      p += 2;
    }
  else
    {
      profiler_log (PROFILER_ALLOC | PROFILER_ZINIT, l, FALSE);
      g_mem_profile ();
    }

  return p;
}

static void
profiler_free (gpointer mem)
{
  gsize *p = mem;

  p -= 2;
  if (p[0])	/* free count */
    {
      g_warning ("free(%p): memory has been freed %"G_GSIZE_FORMAT" times already",
                 p + 2, p[0]);
      profiler_log (PROFILER_FREE,
		    p[1],	/* length */
		    FALSE);
    }
  else
    {
#ifdef  G_ENABLE_DEBUG
      if (g_trap_free_size == p[1])
	G_BREAKPOINT ();
#endif  /* G_ENABLE_DEBUG */

      profiler_log (PROFILER_FREE,
		    p[1],	/* length */
		    TRUE);
      memset (p + 2, 0xaa, p[1]);

      /* for all those that miss standard_free (p); in this place, yes,
       * we do leak all memory when profiling, and that is intentional
       * to catch double frees. patch submissions are futile.
       */
    }
  p[0] += 1;
}

static gpointer
profiler_try_realloc (gpointer mem,
		      gsize    n_bytes)
{
  gsize *p = mem;

  p -= 2;

#ifdef  G_ENABLE_DEBUG
  if (g_trap_realloc_size == n_bytes)
    G_BREAKPOINT ();
#endif  /* G_ENABLE_DEBUG */
  
  if (mem && p[0])	/* free count */
    {
      g_warning ("realloc(%p, %"G_GSIZE_FORMAT"): "
                 "memory has been freed %"G_GSIZE_FORMAT" times already",
                 p + 2, (gsize) n_bytes, p[0]);
      profiler_log (PROFILER_ALLOC | PROFILER_RELOC, n_bytes, FALSE);

      return NULL;
    }
  else
    {
      p = standard_realloc (mem ? p : NULL, sizeof (gsize) * 2 + n_bytes);

      if (p)
	{
	  if (mem)
	    profiler_log (PROFILER_FREE | PROFILER_RELOC, p[1], TRUE);
	  p[0] = 0;
	  p[1] = n_bytes;
	  profiler_log (PROFILER_ALLOC | PROFILER_RELOC, p[1], TRUE);
	  p += 2;
	}
      else
	profiler_log (PROFILER_ALLOC | PROFILER_RELOC, n_bytes, FALSE);

      return p;
    }
}

static gpointer
profiler_realloc (gpointer mem,
		  gsize    n_bytes)
{
  mem = profiler_try_realloc (mem, n_bytes);

  if (!mem)
    g_mem_profile ();

  return mem;
}

static GMemVTable profiler_table = {
  profiler_malloc,
  profiler_realloc,
  profiler_free,
  profiler_calloc,
  profiler_try_malloc,
  profiler_try_realloc,
};
GMemVTable *glib_mem_profiler_table = &profiler_table;

#endif	/* !G_DISABLE_CHECKS */

/* --- MemChunks --- */
/**
 * SECTION:allocators
 * @title: Memory Allocators
 * @short_description: deprecated way to allocate chunks of memory for
 *                     GList, GSList and GNode
 *
 * Prior to 2.10, #GAllocator was used as an efficient way to allocate
 * small pieces of memory for use with the #GList, #GSList and #GNode
 * data structures. Since 2.10, it has been completely replaced by the
 * <link linkend="glib-Memory-Slices">slice allocator</link> and
 * deprecated.
 **/

/**
 * SECTION:memory_chunks
 * @title: Memory Chunks
 * @short_description: deprecated way to allocate groups of equal-sized
 *                     chunks of memory
 *
 * Memory chunks provide an space-efficient way to allocate equal-sized
 * pieces of memory, called atoms. However, due to the administrative
 * overhead (in particular for #G_ALLOC_AND_FREE, and when used from
 * multiple threads), they are in practise often slower than direct use
 * of g_malloc(). Therefore, memory chunks have been deprecated in
 * favor of the <link linkend="glib-Memory-Slices">slice
 * allocator</link>, which has been added in 2.10. All internal uses of
 * memory chunks in GLib have been converted to the
 * <literal>g_slice</literal> API.
 *
 * There are two types of memory chunks, #G_ALLOC_ONLY, and
 * #G_ALLOC_AND_FREE. <itemizedlist> <listitem><para> #G_ALLOC_ONLY
 * chunks only allow allocation of atoms. The atoms can never be freed
 * individually. The memory chunk can only be free in its entirety.
 * </para></listitem> <listitem><para> #G_ALLOC_AND_FREE chunks do
 * allow atoms to be freed individually. The disadvantage of this is
 * that the memory chunk has to keep track of which atoms have been
 * freed. This results in more memory being used and a slight
 * degradation in performance. </para></listitem> </itemizedlist>
 *
 * To create a memory chunk use g_mem_chunk_new() or the convenience
 * macro g_mem_chunk_create().
 *
 * To allocate a new atom use g_mem_chunk_alloc(),
 * g_mem_chunk_alloc0(), or the convenience macros g_chunk_new() or
 * g_chunk_new0().
 *
 * To free an atom use g_mem_chunk_free(), or the convenience macro
 * g_chunk_free(). (Atoms can only be freed if the memory chunk is
 * created with the type set to #G_ALLOC_AND_FREE.)
 *
 * To free any blocks of memory which are no longer being used, use
 * g_mem_chunk_clean(). To clean all memory chunks, use g_blow_chunks().
 *
 * To reset the memory chunk, freeing all of the atoms, use
 * g_mem_chunk_reset().
 *
 * To destroy a memory chunk, use g_mem_chunk_destroy().
 *
 * To help debug memory chunks, use g_mem_chunk_info() and
 * g_mem_chunk_print().
 *
 * <example>
 *  <title>Using a #GMemChunk</title>
 *  <programlisting>
 *   GMemChunk *mem_chunk;
 *   gchar *mem[10000];
 *   gint i;
 *
 *   /<!-- -->* Create a GMemChunk with atoms 50 bytes long, and memory
 *      blocks holding 100 bytes. Note that this means that only 2 atoms
 *      fit into each memory block and so isn't very efficient. *<!-- -->/
 *   mem_chunk = g_mem_chunk_new ("test mem chunk", 50, 100, G_ALLOC_AND_FREE);
 *   /<!-- -->* Now allocate 10000 atoms. *<!-- -->/
 *   for (i = 0; i &lt; 10000; i++)
 *     {
 *       mem[i] = g_chunk_new (gchar, mem_chunk);
 *       /<!-- -->* Fill in the atom memory with some junk. *<!-- -->/
 *       for (j = 0; j &lt; 50; j++)
 *         mem[i][j] = i * j;
 *     }
 *   /<!-- -->* Now free all of the atoms. Note that since we are going to
 *      destroy the GMemChunk, this wouldn't normally be used. *<!-- -->/
 *   for (i = 0; i &lt; 10000; i++)
 *     {
 *       g_mem_chunk_free (mem_chunk, mem[i]);
 *     }
 *   /<!-- -->* We are finished with the GMemChunk, so we destroy it. *<!-- -->/
 *   g_mem_chunk_destroy (mem_chunk);
 *  </programlisting>
 * </example>
 *
 * <example>
 *  <title>Using a #GMemChunk with data structures</title>
 *  <programlisting>
 *    GMemChunk *array_mem_chunk;
 *    GRealArray *array;
 *    /<!-- -->* Create a GMemChunk to hold GRealArray structures, using
 *       the g_mem_chunk_create(<!-- -->) convenience macro. We want 1024 atoms in each
 *       memory block, and we want to be able to free individual atoms. *<!-- -->/
 *    array_mem_chunk = g_mem_chunk_create (GRealArray, 1024, G_ALLOC_AND_FREE);
 *    /<!-- -->* Allocate one atom, using the g_chunk_new(<!-- -->) convenience macro. *<!-- -->/
 *    array = g_chunk_new (GRealArray, array_mem_chunk);
 *    /<!-- -->* We can now use array just like a normal pointer to a structure. *<!-- -->/
 *    array->data            = NULL;
 *    array->len             = 0;
 *    array->alloc           = 0;
 *    array->zero_terminated = (zero_terminated ? 1 : 0);
 *    array->clear           = (clear ? 1 : 0);
 *    array->elt_size        = elt_size;
 *    /<!-- -->* We can free the element, so it can be reused. *<!-- -->/
 *    g_chunk_free (array, array_mem_chunk);
 *    /<!-- -->* We destroy the GMemChunk when we are finished with it. *<!-- -->/
 *    g_mem_chunk_destroy (array_mem_chunk);
 *  </programlisting>
 * </example>
 **/

#ifndef G_ALLOC_AND_FREE

/**
 * GAllocator:
 *
 * The #GAllocator struct contains private data. and should only be
 * accessed using the following functions.
 **/
typedef struct _GAllocator GAllocator;

/**
 * GMemChunk:
 *
 * The #GMemChunk struct is an opaque data structure representing a
 * memory chunk. It should be accessed only through the use of the
 * following functions.
 **/
typedef struct _GMemChunk  GMemChunk;

/**
 * G_ALLOC_ONLY:
 *
 * Specifies the type of a #GMemChunk. Used in g_mem_chunk_new() and
 * g_mem_chunk_create() to specify that atoms will never be freed
 * individually.
 **/
#define G_ALLOC_ONLY	  1

/**
 * G_ALLOC_AND_FREE:
 *
 * Specifies the type of a #GMemChunk. Used in g_mem_chunk_new() and
 * g_mem_chunk_create() to specify that atoms will be freed
 * individually.
 **/
#define G_ALLOC_AND_FREE  2
#endif

struct _GMemChunk {
  guint alloc_size;           /* the size of an atom */
};

/**
 * g_mem_chunk_new:
 * @name: a string to identify the #GMemChunk. It is not copied so it
 *        should be valid for the lifetime of the #GMemChunk. It is
 *        only used in g_mem_chunk_print(), which is used for debugging.
 * @atom_size: the size, in bytes, of each element in the #GMemChunk.
 * @area_size: the size, in bytes, of each block of memory allocated to
 *             contain the atoms.
 * @type: the type of the #GMemChunk.  #G_ALLOC_AND_FREE is used if the
 *        atoms will be freed individually.  #G_ALLOC_ONLY should be
 *        used if atoms will never be freed individually.
 *        #G_ALLOC_ONLY is quicker, since it does not need to track
 *        free atoms, but it obviously wastes memory if you no longer
 *        need many of the atoms.
 * @Returns: the new #GMemChunk.
 *
 * Creates a new #GMemChunk.
 *
 * Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link> instead
 **/
GMemChunk*
g_mem_chunk_new (const gchar  *name,
		 gint          atom_size,
		 gsize         area_size,
		 gint          type)
{
  GMemChunk *mem_chunk;
  g_return_val_if_fail (atom_size > 0, NULL);

  mem_chunk = g_slice_new (GMemChunk);
  mem_chunk->alloc_size = atom_size;
  return mem_chunk;
}

/**
 * g_mem_chunk_destroy:
 * @mem_chunk: a #GMemChunk.
 *
 * Frees all of the memory allocated for a #GMemChunk.
 *
 * Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link> instead
 **/
void
g_mem_chunk_destroy (GMemChunk *mem_chunk)
{
  g_return_if_fail (mem_chunk != NULL);
  
  g_slice_free (GMemChunk, mem_chunk);
}

/**
 * g_mem_chunk_alloc:
 * @mem_chunk: a #GMemChunk.
 * @Returns: a pointer to the allocated atom.
 *
 * Allocates an atom of memory from a #GMemChunk.
 *
 * Deprecated:2.10: Use g_slice_alloc() instead
 **/
gpointer
g_mem_chunk_alloc (GMemChunk *mem_chunk)
{
  g_return_val_if_fail (mem_chunk != NULL, NULL);
  
  return g_slice_alloc (mem_chunk->alloc_size);
}

/**
 * g_mem_chunk_alloc0:
 * @mem_chunk: a #GMemChunk.
 * @Returns: a pointer to the allocated atom.
 *
 * Allocates an atom of memory from a #GMemChunk, setting the memory to
 * 0.
 *
 * Deprecated:2.10: Use g_slice_alloc0() instead
 **/
gpointer
g_mem_chunk_alloc0 (GMemChunk *mem_chunk)
{
  g_return_val_if_fail (mem_chunk != NULL, NULL);
  
  return g_slice_alloc0 (mem_chunk->alloc_size);
}

/**
 * g_mem_chunk_free:
 * @mem_chunk: a #GMemChunk.
 * @mem: a pointer to the atom to free.
 *
 * Frees an atom in a #GMemChunk. This should only be called if the
 * #GMemChunk was created with #G_ALLOC_AND_FREE. Otherwise it will
 * simply return.
 *
 * Deprecated:2.10: Use g_slice_free1() instead
 **/
void
g_mem_chunk_free (GMemChunk *mem_chunk,
		  gpointer   mem)
{
  g_return_if_fail (mem_chunk != NULL);
  
  g_slice_free1 (mem_chunk->alloc_size, mem);
}

/**
 * g_mem_chunk_clean:
 * @mem_chunk: a #GMemChunk.
 *
 * Frees any blocks in a #GMemChunk which are no longer being used.
 *
 * Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link> instead
 **/
void	g_mem_chunk_clean	(GMemChunk *mem_chunk)	{}

/**
 * g_mem_chunk_reset:
 * @mem_chunk: a #GMemChunk.
 *
 * Resets a GMemChunk to its initial state. It frees all of the
 * currently allocated blocks of memory.
 *
 * Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link> instead
 **/
void	g_mem_chunk_reset	(GMemChunk *mem_chunk)	{}


/**
 * g_mem_chunk_print:
 * @mem_chunk: a #GMemChunk.
 *
 * Outputs debugging information for a #GMemChunk. It outputs the name
 * of the #GMemChunk (set with g_mem_chunk_new()), the number of bytes
 * used, and the number of blocks of memory allocated.
 *
 * Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link> instead
 **/
void	g_mem_chunk_print	(GMemChunk *mem_chunk)	{}


/**
 * g_mem_chunk_info:
 *
 * Outputs debugging information for all #GMemChunk objects currently
 * in use. It outputs the number of #GMemChunk objects currently
 * allocated, and calls g_mem_chunk_print() to output information on
 * each one.
 *
 * Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link> instead
 **/
void	g_mem_chunk_info	(void)			{}

/**
 * g_blow_chunks:
 *
 * Calls g_mem_chunk_clean() on all #GMemChunk objects.
 *
 * Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link> instead
 **/
void	g_blow_chunks		(void)			{}

/**
 * g_chunk_new0:
 * @type: the type of the #GMemChunk atoms, typically a structure name.
 * @chunk: a #GMemChunk.
 * @Returns: a pointer to the allocated atom, cast to a pointer to
 *           @type.
 *
 * A convenience macro to allocate an atom of memory from a #GMemChunk.
 * It calls g_mem_chunk_alloc0() and casts the returned atom to a
 * pointer to the given type, avoiding a type cast in the source code.
 *
 * Deprecated:2.10: Use g_slice_new0() instead
 **/

/**
 * g_chunk_free:
 * @mem: a pointer to the atom to be freed.
 * @mem_chunk: a #GMemChunk.
 *
 * A convenience macro to free an atom of memory from a #GMemChunk. It
 * simply switches the arguments and calls g_mem_chunk_free() It is
 * included simply to complement the other convenience macros,
 * g_chunk_new() and g_chunk_new0().
 *
 * Deprecated:2.10: Use g_slice_free() instead
 **/

/**
 * g_chunk_new:
 * @type: the type of the #GMemChunk atoms, typically a structure name.
 * @chunk: a #GMemChunk.
 * @Returns: a pointer to the allocated atom, cast to a pointer to
 *           @type.
 *
 * A convenience macro to allocate an atom of memory from a #GMemChunk.
 * It calls g_mem_chunk_alloc() and casts the returned atom to a
 * pointer to the given type, avoiding a type cast in the source code.
 *
 * Deprecated:2.10: Use g_slice_new() instead
 **/

/**
 * g_mem_chunk_create:
 * @type: the type of the atoms, typically a structure name.
 * @pre_alloc: the number of atoms to store in each block of memory.
 * @alloc_type: the type of the #GMemChunk.  #G_ALLOC_AND_FREE is used
 *              if the atoms will be freed individually.  #G_ALLOC_ONLY
 *              should be used if atoms will never be freed
 *              individually.  #G_ALLOC_ONLY is quicker, since it does
 *              not need to track free atoms, but it obviously wastes
 *              memory if you no longer need many of the atoms.
 * @Returns: the new #GMemChunk.
 *
 * A convenience macro for creating a new #GMemChunk. It calls
 * g_mem_chunk_new(), using the given type to create the #GMemChunk
 * name. The atom size is determined using
 * <function>sizeof()</function>, and the area size is calculated by
 * multiplying the @pre_alloc parameter with the atom size.
 *
 * Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link> instead
 **/


/**
 * g_allocator_new:
 * @name: the name of the #GAllocator. This name is used to set the
 *        name of the #GMemChunk used by the #GAllocator, and is only
 *        used for debugging.
 * @n_preallocs: the number of elements in each block of memory
 *               allocated.  Larger blocks mean less calls to
 *               g_malloc(), but some memory may be wasted.  (GLib uses
 *               128 elements per block by default.) The value must be
 *               between 1 and 65535.
 * @Returns: a new #GAllocator.
 *
 * Creates a new #GAllocator.
 *
 * Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link> instead
 **/
GAllocator*
g_allocator_new (const gchar *name,
		 guint        n_preallocs)
{
  static struct _GAllocator {
    gchar      *name;
    guint16     n_preallocs;
    guint       is_unused : 1;
    guint       type : 4;
    GAllocator *last;
    GMemChunk  *mem_chunk;
    gpointer    free_list;
  } dummy = {
    "GAllocator is deprecated", 1, TRUE, 0, NULL, NULL, NULL,
  };
  /* some (broken) GAllocator uses depend on non-NULL allocators */
  return (void*) &dummy;
}

/**
 * g_allocator_free:
 * @allocator: a #GAllocator.
 *
 * Frees all of the memory allocated by the #GAllocator.
 *
 * Deprecated:2.10: Use the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link> instead
 **/
void
g_allocator_free (GAllocator *allocator)
{
}

#ifdef ENABLE_GC_FRIENDLY_DEFAULT
gboolean g_mem_gc_friendly = TRUE;
#else
/**
 * g_mem_gc_friendly:
 * 
 * This variable is %TRUE if the <envar>G_DEBUG</envar> environment variable
 * includes the key <link linkend="G_DEBUG">gc-friendly</link>.
 */
gboolean g_mem_gc_friendly = FALSE;
#endif

static void
g_mem_init_nomessage (void)
{
  gchar buffer[1024];
  const gchar *val;
  const GDebugKey keys[] = {
    { "gc-friendly", 1 },
  };
  gint flags;
  if (g_mem_initialized)
    return;
  /* don't use g_malloc/g_message here */
  val = _g_getenv_nomalloc ("G_DEBUG", buffer);
  flags = !val ? 0 : g_parse_debug_string (val, keys, G_N_ELEMENTS (keys));
  if (flags & 1)        /* gc-friendly */
    {
      g_mem_gc_friendly = TRUE;
    }
  g_mem_initialized = TRUE;
}

void
_g_mem_thread_init_noprivate_nomessage (void)
{
  /* we may only create mutexes here, locking/
   * unlocking a mutex does not yet work.
   */
  g_mem_init_nomessage();
#ifndef G_DISABLE_CHECKS
  gmem_profile_mutex = g_mutex_new ();
#endif
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The GNU Lesser General Public License (LGPLv3)


Written By
Software Developer
Argentina Argentina
System developer from Argentina.

Programmed in VB 5,6,.NET, C#, Java, PL-SQL, Transac-SQL, C, C++ and even some "calculator" language.

Love to build small, useful applications.
Usually building big and complicated apps based on solid, reliable components.

Hobbies: reading, photography, chess, paddle, running.

Comments and Discussions