Click here to Skip to main content
15,894,907 members
Articles / Artificial Intelligence / Machine Learning

Easy to use Wrapper (DLL) for Intel's OpenCV Library with Examples

Rate me:
Please Sign up or sign in to vote.
4.92/5 (64 votes)
3 Mar 2009CPOL19 min read 1.3M   38.8K   236  
The article describes an easy to use a wrapper for Intel's OpenCV lib with examples.
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "_ml.h"

/****************************************************************************************\
*                          K-Nearest Neighbors Classifier                                *
\****************************************************************************************/

// k Nearest Neighbors
CvKNearest::CvKNearest()
{
    samples = 0;
    clear();
}


CvKNearest::~CvKNearest()
{
    clear();
}


CvKNearest::CvKNearest( const CvMat* _train_data, const CvMat* _responses,
                        const CvMat* _sample_idx, bool _is_regression, int _max_k )
{
    samples = 0;
    train( _train_data, _responses, _sample_idx, _is_regression, _max_k, false );
}


void CvKNearest::clear()
{
    while( samples )
    {
        CvVectors* next_samples = samples->next;
        cvFree( &samples->data.fl );
        cvFree( &samples );
        samples = next_samples;
    }
    var_count = 0;
    total = 0;
    max_k = 0;
}


int CvKNearest::get_max_k() const { return max_k; }

int CvKNearest::get_var_count() const { return var_count; }

bool CvKNearest::is_regression() const { return regression; }

int CvKNearest::get_sample_count() const { return total; }

bool CvKNearest::train( const CvMat* _train_data, const CvMat* _responses,
                        const CvMat* _sample_idx, bool _is_regression,
                        int _max_k, bool _update_base )
{
    bool ok = false;
    CvMat* responses = 0;

    CV_FUNCNAME( "CvKNearest::train" );

    __BEGIN__;

    CvVectors* _samples;
    float** _data;
    int _count, _dims, _dims_all, _rsize;
    
    if( !_update_base )
        clear();

    // Prepare training data and related parameters.
    // Treat categorical responses as ordered - to prevent class label compression and
    // to enable entering new classes in the updates
    CV_CALL( cvPrepareTrainData( "CvKNearest::train", _train_data, CV_ROW_SAMPLE,
        _responses, CV_VAR_ORDERED, 0, _sample_idx, true, (const float***)&_data,
        &_count, &_dims, &_dims_all, &responses, 0, 0 ));

    if( _update_base && _dims != var_count )
        CV_ERROR( CV_StsBadArg, "The newly added data have different dimensionality" );

    if( !_update_base )
    {
        if( _max_k < 1 )
            CV_ERROR( CV_StsOutOfRange, "max_k must be a positive number" );
        
        regression = _is_regression;
        var_count = _dims;
        max_k = _max_k;
    }

    _rsize = _count*sizeof(float);
    CV_CALL( _samples = (CvVectors*)cvAlloc( sizeof(*_samples) + _rsize ));
    _samples->next = samples;
    _samples->type = CV_32F;
    _samples->data.fl = _data;
    _samples->count = _count;
    total += _count;

    samples = _samples;
    memcpy( _samples + 1, responses->data.fl, _rsize );

    ok = true;

    __END__;

    return ok;
}



void CvKNearest::find_neighbors_direct( const CvMat* _samples, int k, int start, int end,
                    float* neighbor_responses, const float** neighbors, float* dist ) const
{
    int i, j, count = end - start, k1 = 0, k2 = 0, d = var_count;
    CvVectors* s = samples;

    for( ; s != 0; s = s->next )
    {
        int n = s->count;
        for( j = 0; j < n; j++ )
        {
            for( i = 0; i < count; i++ )
            {
                double sum = 0;
                Cv32suf si;
                const float* v = s->data.fl[j];
                const float* u = (float*)(_samples->data.ptr + _samples->step*(start + i));
                Cv32suf* dd = (Cv32suf*)(dist + i*k);
                float* nr;
                const float** nn;
                int t, ii, ii1;

                for( t = 0; t <= d - 4; t += 4 )
                {
                    double t0 = u[t] - v[t], t1 = u[t+1] - v[t+1];
                    double t2 = u[t+2] - v[t+2], t3 = u[t+3] - v[t+3];
                    sum += t0*t0 + t1*t1 + t2*t2 + t3*t3;
                }

                for( ; t < d; t++ )
                {
                    double t0 = u[t] - v[t];
                    sum += t0*t0;
                }

                si.f = (float)sum;
                for( ii = k1-1; ii >= 0; ii-- )
                    if( si.i > dd[ii].i )
                        break;
                if( ii >= k-1 )
                    continue;

                nr = neighbor_responses + i*k;
                nn = neighbors ? neighbors + (start + i)*k : 0;
                for( ii1 = k2 - 1; ii1 > ii; ii1-- )
                {
                    dd[ii1+1].i = dd[ii1].i;
                    nr[ii1+1] = nr[ii1];
                    if( nn ) nn[ii1+1] = nn[ii1];
                }
                dd[ii+1].i = si.i;
                nr[ii+1] = ((float*)(s + 1))[j];
                if( nn )
                    nn[ii+1] = v;
            }
            k1 = MIN( k1+1, k );
            k2 = MIN( k1, k-1 );
        }
    }
}


float CvKNearest::write_results( int k, int k1, int start, int end,
    const float* neighbor_responses, const float* dist,
    CvMat* _results, CvMat* _neighbor_responses,
    CvMat* _dist, Cv32suf* sort_buf ) const
{
    float result = 0.f;
    int i, j, j1, count = end - start;
    double inv_scale = 1./k1;
    int rstep = _results && !CV_IS_MAT_CONT(_results->type) ? _results->step/sizeof(result) : 1;

    for( i = 0; i < count; i++ )
    {
        const Cv32suf* nr = (const Cv32suf*)(neighbor_responses + i*k);
        float* dst;
        float r;
        if( _results || start+i == 0 )
        {
            if( regression )
            {
                double s = 0;
                for( j = 0; j < k1; j++ )
                    s += nr[j].f;
                r = (float)(s*inv_scale);
            }
            else
            {
                int prev_start = 0, best_count = 0, cur_count;
                Cv32suf best_val;
            
                for( j = 0; j < k1; j++ )
                    sort_buf[j].i = nr[j].i;

                for( j = k1-1; j > 0; j-- )
                {
                    bool swap_fl = false;
                    for( j1 = 0; j1 < j; j1++ )
                        if( sort_buf[j1].i > sort_buf[j1+1].i )
                        {
                            int t;
                            CV_SWAP( sort_buf[j1].i, sort_buf[j1+1].i, t );
                            swap_fl = true;
                        }
                    if( !swap_fl )
                        break;
                }
            
                best_val.i = 0;
                for( j = 1; j <= k1; j++ )
                    if( j == k1 || sort_buf[j].i != sort_buf[j-1].i )
                    {
                        cur_count = j - prev_start;
                        if( best_count < cur_count )
                        {
                            best_count = cur_count;
                            best_val.i = sort_buf[j-1].i;
                        }
                        prev_start = j;
                    }
                r = best_val.f;
            }
            
            if( start+i == 0 )
                result = r;

            if( _results )
                _results->data.fl[(start + i)*rstep] = r;
        }

        if( _neighbor_responses )
        {
            dst = (float*)(_neighbor_responses->data.ptr +
                (start + i)*_neighbor_responses->step);
            for( j = 0; j < k1; j++ )
                dst[j] = nr[j].f;
            for( ; j < k; j++ )
                dst[j] = 0.f;
        }

        if( _dist )
        {
            dst = (float*)(_dist->data.ptr + (start + i)*_dist->step);
            for( j = 0; j < k1; j++ )
                dst[j] = dist[j + i*k];
            for( ; j < k; j++ )
                dst[j] = 0.f;
        }
    }

    return result;
}
    


float CvKNearest::find_nearest( const CvMat* _samples, int k, CvMat* _results,
    const float** _neighbors, CvMat* _neighbor_responses, CvMat* _dist ) const
{
    float result = 0.f;
    bool local_alloc = false;
    float* buf = 0;
    const int max_blk_count = 128, max_buf_sz = 1 << 12;

    CV_FUNCNAME( "CvKNearest::find_nearest" );

    __BEGIN__;

    int i, count, count_scale, blk_count0, blk_count = 0, buf_sz, k1;

    if( !samples )
        CV_ERROR( CV_StsError, "The search tree must be constructed first using train method" );

    if( !CV_IS_MAT(_samples) ||
        CV_MAT_TYPE(_samples->type) != CV_32FC1 ||
        _samples->cols != var_count )
        CV_ERROR( CV_StsBadArg, "Input samples must be floating-point matrix (<num_samples>x<var_count>)" );

    if( _results && (!CV_IS_MAT(_results) ||
        _results->cols != 1 && _results->rows != 1 ||
        _results->cols + _results->rows - 1 != _samples->rows) )
        CV_ERROR( CV_StsBadArg,
        "The results must be 1d vector containing as much elements as the number of samples" );

    if( _results && CV_MAT_TYPE(_results->type) != CV_32FC1 &&
        (CV_MAT_TYPE(_results->type) != CV_32SC1 || regression))
        CV_ERROR( CV_StsUnsupportedFormat,
        "The results must be floating-point or integer (in case of classification) vector" );

    if( k < 1 || k > max_k )
        CV_ERROR( CV_StsOutOfRange, "k must be within 1..max_k range" );

    if( _neighbor_responses )
    {
        if( !CV_IS_MAT(_neighbor_responses) || CV_MAT_TYPE(_neighbor_responses->type) != CV_32FC1 ||
            _neighbor_responses->rows != _samples->rows || _neighbor_responses->cols != k )
            CV_ERROR( CV_StsBadArg,
            "The neighbor responses (if present) must be floating-point matrix of <num_samples> x <k> size" );
    }

    if( _dist )
    {
        if( !CV_IS_MAT(_dist) || CV_MAT_TYPE(_dist->type) != CV_32FC1 ||
            _dist->rows != _samples->rows || _dist->cols != k )
            CV_ERROR( CV_StsBadArg,
            "The distances from the neighbors (if present) must be floating-point matrix of <num_samples> x <k> size" );
    }

    count = _samples->rows;
    count_scale = k*2*sizeof(float);
    blk_count0 = MIN( count, max_blk_count );
    buf_sz = MIN( blk_count0 * count_scale, max_buf_sz );
    blk_count0 = MAX( buf_sz/count_scale, 1 );
    blk_count0 += blk_count0 % 2;
    blk_count0 = MIN( blk_count0, count );
    buf_sz = blk_count0 * count_scale + k*sizeof(float);
    k1 = get_sample_count();
    k1 = MIN( k1, k );

    if( buf_sz <= CV_MAX_LOCAL_SIZE )
    {
        buf = (float*)cvStackAlloc( buf_sz );
        local_alloc = true;
    }
    else
        CV_CALL( buf = (float*)cvAlloc( buf_sz ));

    for( i = 0; i < count; i += blk_count )
    {
        blk_count = MIN( count - i, blk_count0 );
        float* neighbor_responses = buf;
        float* dist = buf + blk_count*k;
        Cv32suf* sort_buf = (Cv32suf*)(dist + blk_count*k);

        find_neighbors_direct( _samples, k, i, i + blk_count,
                    neighbor_responses, _neighbors, dist );

        float r = write_results( k, k1, i, i + blk_count, neighbor_responses, dist,
                                 _results, _neighbor_responses, _dist, sort_buf );
        if( i == 0 )
            result = r;
    }

    __END__;

    if( !local_alloc )
        cvFree( &buf );

    return result;
}

/* End of file */

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Systems Engineer self employed
Germany Germany
This member has not yet provided a Biography. Assume it's interesting and varied, and probably something to do with programming.

Comments and Discussions