Click here to Skip to main content
15,884,099 members
Articles / Web Development / ASP.NET

Encryption and compression, native and managed

Rate me:
Please Sign up or sign in to vote.
4.74/5 (17 votes)
29 Jun 2012CPOL7 min read 111.1K   6.9K   92  
DLL for native encryption and compression (using Crypto++). Includes RSA Key Generator in C#, and encryption and compression in ASP.NET (C#).
// rabin.cpp - written and placed in the public domain by Wei Dai

#include "pch.h"
#include "rabin.h"
#include "nbtheory.h"
#include "asn.h"
#include "sha.h"
#include "modarith.h"

NAMESPACE_BEGIN(CryptoPP)

void RabinFunction::BERDecode(BufferedTransformation &bt)
{
	BERSequenceDecoder seq(bt);
	m_n.BERDecode(seq);
	m_r.BERDecode(seq);
	m_s.BERDecode(seq);
	seq.MessageEnd();
}

void RabinFunction::DEREncode(BufferedTransformation &bt) const
{
	DERSequenceEncoder seq(bt);
	m_n.DEREncode(seq);
	m_r.DEREncode(seq);
	m_s.DEREncode(seq);
	seq.MessageEnd();
}

Integer RabinFunction::ApplyFunction(const Integer &in) const
{
	DoQuickSanityCheck();

	Integer out = in.Squared()%m_n;
	if (in.IsOdd())
		out = out*m_r%m_n;
	if (Jacobi(in, m_n)==-1)
		out = out*m_s%m_n;
	return out;
}

bool RabinFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
{
	bool pass = true;
	pass = pass && m_n > Integer::One() && m_n%4 == 1;
	pass = pass && m_r > Integer::One() && m_r < m_n;
	pass = pass && m_s > Integer::One() && m_s < m_n;
	if (level >= 1)
		pass = pass && Jacobi(m_r, m_n) == -1 && Jacobi(m_s, m_n) == -1;
	return pass;
}

bool RabinFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{
	return GetValueHelper(this, name, valueType, pValue).Assignable()
		CRYPTOPP_GET_FUNCTION_ENTRY(Modulus)
		CRYPTOPP_GET_FUNCTION_ENTRY(QuadraticResidueModPrime1)
		CRYPTOPP_GET_FUNCTION_ENTRY(QuadraticResidueModPrime2)
		;
}

void RabinFunction::AssignFrom(const NameValuePairs &source)
{
	AssignFromHelper(this, source)
		CRYPTOPP_SET_FUNCTION_ENTRY(Modulus)
		CRYPTOPP_SET_FUNCTION_ENTRY(QuadraticResidueModPrime1)
		CRYPTOPP_SET_FUNCTION_ENTRY(QuadraticResidueModPrime2)
		;
}

// *****************************************************************************
// private key operations:

// generate a random private key
void InvertibleRabinFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
{
	int modulusSize = 2048;
	alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize);

	if (modulusSize < 16)
		throw InvalidArgument("InvertibleRabinFunction: specified modulus size is too small");

	// VC70 workaround: putting these after primeParam causes overlapped stack allocation
	bool rFound=false, sFound=false;
	Integer t=2;

	const NameValuePairs &primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize)
		("EquivalentTo", 3)("Mod", 4);
	m_p.GenerateRandom(rng, primeParam);
	m_q.GenerateRandom(rng, primeParam);

	while (!(rFound && sFound))
	{
		int jp = Jacobi(t, m_p);
		int jq = Jacobi(t, m_q);

		if (!rFound && jp==1 && jq==-1)
		{
			m_r = t;
			rFound = true;
		}

		if (!sFound && jp==-1 && jq==1)
		{
			m_s = t;
			sFound = true;
		}

		++t;
	}

	m_n = m_p * m_q;
	m_u = m_q.InverseMod(m_p);
}

void InvertibleRabinFunction::BERDecode(BufferedTransformation &bt)
{
	BERSequenceDecoder seq(bt);
	m_n.BERDecode(seq);
	m_r.BERDecode(seq);
	m_s.BERDecode(seq);
	m_p.BERDecode(seq);
	m_q.BERDecode(seq);
	m_u.BERDecode(seq);
	seq.MessageEnd();
}

void InvertibleRabinFunction::DEREncode(BufferedTransformation &bt) const
{
	DERSequenceEncoder seq(bt);
	m_n.DEREncode(seq);
	m_r.DEREncode(seq);
	m_s.DEREncode(seq);
	m_p.DEREncode(seq);
	m_q.DEREncode(seq);
	m_u.DEREncode(seq);
	seq.MessageEnd();
}

Integer InvertibleRabinFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &in) const
{
	DoQuickSanityCheck();

	ModularArithmetic modn(m_n);
	Integer r(rng, Integer::One(), m_n - Integer::One());
	r = modn.Square(r);
	Integer r2 = modn.Square(r);
	Integer c = modn.Multiply(in, r2);		// blind

	Integer cp=c%m_p, cq=c%m_q;

	int jp = Jacobi(cp, m_p);
	int jq = Jacobi(cq, m_q);

	if (jq==-1)
	{
		cp = cp*EuclideanMultiplicativeInverse(m_r, m_p)%m_p;
		cq = cq*EuclideanMultiplicativeInverse(m_r, m_q)%m_q;
	}

	if (jp==-1)
	{
		cp = cp*EuclideanMultiplicativeInverse(m_s, m_p)%m_p;
		cq = cq*EuclideanMultiplicativeInverse(m_s, m_q)%m_q;
	}

	cp = ModularSquareRoot(cp, m_p);
	cq = ModularSquareRoot(cq, m_q);

	if (jp==-1)
		cp = m_p-cp;

	Integer out = CRT(cq, m_q, cp, m_p, m_u);

	out = modn.Divide(out, r);	// unblind

	if ((jq==-1 && out.IsEven()) || (jq==1 && out.IsOdd()))
		out = m_n-out;

	return out;
}

bool InvertibleRabinFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
{
	bool pass = RabinFunction::Validate(rng, level);
	pass = pass && m_p > Integer::One() && m_p%4 == 3 && m_p < m_n;
	pass = pass && m_q > Integer::One() && m_q%4 == 3 && m_q < m_n;
	pass = pass && m_u.IsPositive() && m_u < m_p;
	if (level >= 1)
	{
		pass = pass && m_p * m_q == m_n;
		pass = pass && m_u * m_q % m_p == 1;
		pass = pass && Jacobi(m_r, m_p) == 1;
		pass = pass && Jacobi(m_r, m_q) == -1;
		pass = pass && Jacobi(m_s, m_p) == -1;
		pass = pass && Jacobi(m_s, m_q) == 1;
	}
	if (level >= 2)
		pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2);
	return pass;
}

bool InvertibleRabinFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{
	return GetValueHelper<RabinFunction>(this, name, valueType, pValue).Assignable()
		CRYPTOPP_GET_FUNCTION_ENTRY(Prime1)
		CRYPTOPP_GET_FUNCTION_ENTRY(Prime2)
		CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
		;
}

void InvertibleRabinFunction::AssignFrom(const NameValuePairs &source)
{
	AssignFromHelper<RabinFunction>(this, source)
		CRYPTOPP_SET_FUNCTION_ENTRY(Prime1)
		CRYPTOPP_SET_FUNCTION_ENTRY(Prime2)
		CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
		;
}

NAMESPACE_END

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Software Developer
Argentina Argentina
System developer from Argentina.

Programmed in VB 5,6,.NET, C#, Java, PL-SQL, Transac-SQL, C, C++ and even some "calculator" language.

Love to build small, useful applications.
Usually building big and complicated apps based on solid, reliable components.

Hobbies: reading, photography, chess, paddle, running.

Comments and Discussions