Click here to Skip to main content
15,886,056 members
Articles / Desktop Programming / Win32

Windows Development in C++, Working with Menus

Rate me:
Please Sign up or sign in to vote.
4.96/5 (60 votes)
3 Jan 2015CPOL19 min read 171.8K   4.1K   163  
Windows API, menus, C++ lambda expressions, std::enable_shared_from_this
#include "stdafx.h"

/*  -- translated by f2c (version 19940927).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "hnum_f2c.h"
namespace harlinn
{
    namespace numerics
    {
        namespace SuperLU
        {
            /* Subroutine */ 
            int zgemv_(char *trans, integer *m, integer *n, 
	            doublecomplex *alpha, doublecomplex *a, integer *lda, doublecomplex *
	            x, integer *incx, doublecomplex *beta, doublecomplex *y, integer *incy)
            {


                /* System generated locals */
                integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
                doublecomplex z__1, z__2, z__3;

                /* Builtin functions */
                void d_cnjg(doublecomplex *, doublecomplex *);

                /* Local variables */
                static integer info;
                static doublecomplex temp;
                static integer lenx, leny, i, j;
                    
                static integer ix, iy, jx, jy, kx, ky;
                    
                static logical noconj;


            /*  Purpose   
                =======   

                ZGEMV  performs one of the matrix-vector operations   

                    y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y,   or   

                    y := alpha*conjg( A' )*x + beta*y,   

                where alpha and beta are scalars, x and y are vectors and A is an   
                m by n matrix.   

                Parameters   
                ==========   

                TRANS  - CHARACTER*1.   
                            On entry, TRANS specifies the operation to be performed as   
                            follows:   

                            TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.   

                            TRANS = 'T' or 't'   y := alpha*A'*x + beta*y.   

                            TRANS = 'C' or 'c'   y := alpha*conjg( A' )*x + beta*y.   

                            Unchanged on exit.   

                M      - INTEGER.   
                            On entry, M specifies the number of rows of the matrix A.   
                            M must be at least zero.   
                            Unchanged on exit.   

                N      - INTEGER.   
                            On entry, N specifies the number of columns of the matrix A. 
  
                            N must be at least zero.   
                            Unchanged on exit.   

                ALPHA  - COMPLEX*16      .   
                            On entry, ALPHA specifies the scalar alpha.   
                            Unchanged on exit.   

                A      - COMPLEX*16       array of DIMENSION ( LDA, n ).   
                            Before entry, the leading m by n part of the array A must   
                            contain the matrix of coefficients.   
                            Unchanged on exit.   

                LDA    - INTEGER.   
                            On entry, LDA specifies the first dimension of A as declared 
  
                            in the calling (sub) program. LDA must be at least   
                            max( 1, m ).   
                            Unchanged on exit.   

                X      - COMPLEX*16       array of DIMENSION at least   
                            ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'   
                            and at least   
                            ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.   
                            Before entry, the incremented array X must contain the   
                            vector x.   
                            Unchanged on exit.   

                INCX   - INTEGER.   
                            On entry, INCX specifies the increment for the elements of   
                            X. INCX must not be zero.   
                            Unchanged on exit.   

                BETA   - COMPLEX*16      .   
                            On entry, BETA specifies the scalar beta. When BETA is   
                            supplied as zero then Y need not be set on input.   
                            Unchanged on exit.   

                Y      - COMPLEX*16       array of DIMENSION at least   
                            ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'   
                            and at least   
                            ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.   
                            Before entry with BETA non-zero, the incremented array Y   
                            must contain the vector y. On exit, Y is overwritten by the 
  
                            updated vector y.   

                INCY   - INTEGER.   
                            On entry, INCY specifies the increment for the elements of   
                            Y. INCY must not be zero.   
                            Unchanged on exit.   


                Level 2 Blas routine.   

                -- Written on 22-October-1986.   
                    Jack Dongarra, Argonne National Lab.   
                    Jeremy Du Croz, Nag Central Office.   
                    Sven Hammarling, Nag Central Office.   
                    Richard Hanson, Sandia National Labs.   



                    Test the input parameters.   

    
                Parameter adjustments   
                    Function Body */
            #define X(I) x[(I)-1]
            #define Y(I) y[(I)-1]

            #define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]

                info = 0;
                if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! 
	                lsame_(trans, "C")) {
	            info = 1;
                } else if (*m < 0) {
	            info = 2;
                } else if (*n < 0) {
	            info = 3;
                }
                else if ( *lda < std::max( 1, *m ) )
                {
	            info = 6;
                } else if (*incx == 0) {
	            info = 8;
                } else if (*incy == 0) {
	            info = 11;
                }
                if (info != 0) {
	            xerbla_("ZGEMV ", &info);
	            return 0;
                }

            /*     Quick return if possible. */

                if (*m == 0 || *n == 0 || alpha->r == 0. && alpha->i == 0. && (beta->r == 
	                1. && beta->i == 0.)) {
	            return 0;
                }

                noconj = lsame_(trans, "T");

            /*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set 
  
                    up the start points in  X  and  Y. */

                if (lsame_(trans, "N")) {
	            lenx = *n;
	            leny = *m;
                } else {
	            lenx = *m;
	            leny = *n;
                }
                if (*incx > 0) {
	            kx = 1;
                } else {
	            kx = 1 - (lenx - 1) * *incx;
                }
                if (*incy > 0) {
	            ky = 1;
                } else {
	            ky = 1 - (leny - 1) * *incy;
                }

            /*     Start the operations. In this version the elements of A are   
                    accessed sequentially with one pass through A.   

                    First form  y := beta*y. */

                if (beta->r != 1. || beta->i != 0.) {
	            if (*incy == 1) {
	                if (beta->r == 0. && beta->i == 0.) {
		            i__1 = leny;
		            for (i = 1; i <= leny; ++i) {
		                i__2 = i;
		                Y(i).r = 0., Y(i).i = 0.;
            /* L10: */
		            }
	                } else {
		            i__1 = leny;
		            for (i = 1; i <= leny; ++i) {
		                i__2 = i;
		                i__3 = i;
		                z__1.r = beta->r * Y(i).r - beta->i * Y(i).i, 
			                z__1.i = beta->r * Y(i).i + beta->i * Y(i)
			                .r;
		                Y(i).r = z__1.r, Y(i).i = z__1.i;
            /* L20: */
		            }
	                }
	            } else {
	                iy = ky;
	                if (beta->r == 0. && beta->i == 0.) {
		            i__1 = leny;
		            for (i = 1; i <= leny; ++i) {
		                i__2 = iy;
		                Y(iy).r = 0., Y(iy).i = 0.;
		                iy += *incy;
            /* L30: */
		            }
	                } else {
		            i__1 = leny;
		            for (i = 1; i <= leny; ++i) {
		                i__2 = iy;
		                i__3 = iy;
		                z__1.r = beta->r * Y(iy).r - beta->i * Y(iy).i, 
			                z__1.i = beta->r * Y(iy).i + beta->i * Y(iy)
			                .r;
		                Y(iy).r = z__1.r, Y(iy).i = z__1.i;
		                iy += *incy;
            /* L40: */
		            }
	                }
	            }
                }
                if (alpha->r == 0. && alpha->i == 0.) {
	            return 0;
                }
                if (lsame_(trans, "N")) {

            /*        Form  y := alpha*A*x + y. */

	            jx = kx;
	            if (*incy == 1) {
	                i__1 = *n;
	                for (j = 1; j <= *n; ++j) {
		            i__2 = jx;
		            if (X(jx).r != 0. || X(jx).i != 0.) {
		                i__2 = jx;
		                z__1.r = alpha->r * X(jx).r - alpha->i * X(jx).i, 
			                z__1.i = alpha->r * X(jx).i + alpha->i * X(jx)
			                .r;
		                temp.r = z__1.r, temp.i = z__1.i;
		                i__2 = *m;
		                for (i = 1; i <= *m; ++i) {
			            i__3 = i;
			            i__4 = i;
			            i__5 = i + j * a_dim1;
			            z__2.r = temp.r * A(i,j).r - temp.i * A(i,j).i, 
				            z__2.i = temp.r * A(i,j).i + temp.i * A(i,j)
				            .r;
			            z__1.r = Y(i).r + z__2.r, z__1.i = Y(i).i + 
				            z__2.i;
			            Y(i).r = z__1.r, Y(i).i = z__1.i;
            /* L50: */
		                }
		            }
		            jx += *incx;
            /* L60: */
	                }
	            } else {
	                i__1 = *n;
	                for (j = 1; j <= *n; ++j) {
		            i__2 = jx;
		            if (X(jx).r != 0. || X(jx).i != 0.) {
		                i__2 = jx;
		                z__1.r = alpha->r * X(jx).r - alpha->i * X(jx).i, 
			                z__1.i = alpha->r * X(jx).i + alpha->i * X(jx)
			                .r;
		                temp.r = z__1.r, temp.i = z__1.i;
		                iy = ky;
		                i__2 = *m;
		                for (i = 1; i <= *m; ++i) {
			            i__3 = iy;
			            i__4 = iy;
			            i__5 = i + j * a_dim1;
			            z__2.r = temp.r * A(i,j).r - temp.i * A(i,j).i, 
				            z__2.i = temp.r * A(i,j).i + temp.i * A(i,j)
				            .r;
			            z__1.r = Y(iy).r + z__2.r, z__1.i = Y(iy).i + 
				            z__2.i;
			            Y(iy).r = z__1.r, Y(iy).i = z__1.i;
			            iy += *incy;
            /* L70: */
		                }
		            }
		            jx += *incx;
            /* L80: */
	                }
	            }
                } else {

            /*        Form  y := alpha*A'*x + y  or  y := alpha*conjg( A' )*x + y.
                */

	            jy = ky;
	            if (*incx == 1) {
	                i__1 = *n;
	                for (j = 1; j <= *n; ++j) {
		            temp.r = 0., temp.i = 0.;
		            if (noconj) {
		                i__2 = *m;
		                for (i = 1; i <= *m; ++i) {
			            i__3 = i + j * a_dim1;
			            i__4 = i;
			            z__2.r = A(i,j).r * X(i).r - A(i,j).i * X(i)
				            .i, z__2.i = A(i,j).r * X(i).i + A(i,j)
				            .i * X(i).r;
			            z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
			            temp.r = z__1.r, temp.i = z__1.i;
            /* L90: */
		                }
		            } else {
		                i__2 = *m;
		                for (i = 1; i <= *m; ++i) {
			            d_cnjg(&z__3, &A(i,j));
			            i__3 = i;
			            z__2.r = z__3.r * X(i).r - z__3.i * X(i).i, 
				            z__2.i = z__3.r * X(i).i + z__3.i * X(i)
				            .r;
			            z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
			            temp.r = z__1.r, temp.i = z__1.i;
            /* L100: */
		                }
		            }
		            i__2 = jy;
		            i__3 = jy;
		            z__2.r = alpha->r * temp.r - alpha->i * temp.i, z__2.i = 
			            alpha->r * temp.i + alpha->i * temp.r;
		            z__1.r = Y(jy).r + z__2.r, z__1.i = Y(jy).i + z__2.i;
		            Y(jy).r = z__1.r, Y(jy).i = z__1.i;
		            jy += *incy;
            /* L110: */
	                }
	            } else {
	                i__1 = *n;
	                for (j = 1; j <= *n; ++j) {
		            temp.r = 0., temp.i = 0.;
		            ix = kx;
		            if (noconj) {
		                i__2 = *m;
		                for (i = 1; i <= *m; ++i) {
			            i__3 = i + j * a_dim1;
			            i__4 = ix;
			            z__2.r = A(i,j).r * X(ix).r - A(i,j).i * X(ix)
				            .i, z__2.i = A(i,j).r * X(ix).i + A(i,j)
				            .i * X(ix).r;
			            z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
			            temp.r = z__1.r, temp.i = z__1.i;
			            ix += *incx;
            /* L120: */
		                }
		            } else {
		                i__2 = *m;
		                for (i = 1; i <= *m; ++i) {
			            d_cnjg(&z__3, &A(i,j));
			            i__3 = ix;
			            z__2.r = z__3.r * X(ix).r - z__3.i * X(ix).i, 
				            z__2.i = z__3.r * X(ix).i + z__3.i * X(ix)
				            .r;
			            z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
			            temp.r = z__1.r, temp.i = z__1.i;
			            ix += *incx;
            /* L130: */
		                }
		            }
		            i__2 = jy;
		            i__3 = jy;
		            z__2.r = alpha->r * temp.r - alpha->i * temp.i, z__2.i = 
			            alpha->r * temp.i + alpha->i * temp.r;
		            z__1.r = Y(jy).r + z__2.r, z__1.i = Y(jy).i + z__2.i;
		            Y(jy).r = z__1.r, Y(jy).i = z__1.i;
		            jy += *incy;
            /* L140: */
	                }
	            }
                }

                return 0;

            /*     End of ZGEMV . */

            } /* zgemv_ */

        };
    };
};

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Architect Sea Surveillance AS
Norway Norway
Chief Architect - Sea Surveillance AS.

Specializing in integrated operations and high performance computing solutions.

I’ve been fooling around with computers since the early eighties, I’ve even done work on CP/M and MP/M.

Wrote my first “real” program on a BBC micro model B based on a series in a magazine at that time. It was fun and I got hooked on this thing called programming ...

A few Highlights:

  • High performance application server development
  • Model Driven Architecture and Code generators
  • Real-Time Distributed Solutions
  • C, C++, C#, Java, TSQL, PL/SQL, Delphi, ActionScript, Perl, Rexx
  • Microsoft SQL Server, Oracle RDBMS, IBM DB2, PostGreSQL
  • AMQP, Apache qpid, RabbitMQ, Microsoft Message Queuing, IBM WebSphereMQ, Oracle TuxidoMQ
  • Oracle WebLogic, IBM WebSphere
  • Corba, COM, DCE, WCF
  • AspenTech InfoPlus.21(IP21), OsiSoft PI


More information about what I do for a living can be found at: harlinn.com or LinkedIn

You can contact me at espen@harlinn.no

Comments and Discussions