Click here to Skip to main content
15,881,248 members
Articles / Desktop Programming / Win32

Windows Development in C++, Working with Menus

Rate me:
Please Sign up or sign in to vote.
4.96/5 (60 votes)
3 Jan 2015CPOL19 min read 171.5K   4.1K   163  
Windows API, menus, C++ lambda expressions, std::enable_shared_from_this
#include "stdafx.h"

#include "hnum_pdsp_defs.h"

namespace harlinn
{
    namespace numerics
    {
        namespace SuperLU
        {
            namespace Double
            {

                #if ( MACH==CRAY_PVP )
                fortran void STRSM(_fcd, _fcd, _fcd, _fcd, int*, int*, double*,
		                   double*, int*, double*, int*);
                fortran void SGEMM(_fcd, _fcd, int*, int*, int*, double*, double*, 
		                   int*, double*, int*, double*, double*, int*);
                #endif

                void
                dgstrs(trans_t trans, SuperMatrix *L, SuperMatrix *U, 
                       int *perm_r, int *perm_c, SuperMatrix *B, Gstat_t *Gstat, int *info)
                {
                /*
                 * -- SuperLU MT routine (version 2.0) --
                 * Lawrence Berkeley National Lab, Univ. of California Berkeley,
                 * and Xerox Palo Alto Research Center.
                 * September 10, 2007
                 *
                 *
                 * Purpose
                 * =======
                 *
                 * dgstrs() solves a system of linear equations A*X=B or A'*X=B
                 * with A sparse and B dense, using the LU factorization computed by
                 * pdgstrf().
                 *
                 * Arguments
                 * =========
                 *
                 * trans   (input) Specifies the form of the system of equations:
                 *          = NOTRANS: A * X = B  (No transpose)
                 *          = TRANS:   A'* X = B  (Transpose)
                 *
                 * L       (input) SuperMatrix*
                 *         The factor L from the factorization Pr*A*Pc=L*U as computed by
                 *         pdgstrf(). Use compressed row subscripts storage for supernodes,
                 *         i.e., L has types: Stype = SCP, Dtype = _D, Mtype = TRLU.
                 *
                 * U       (input) SuperMatrix*
                 *         The factor U from the factorization Pr*A*Pc=L*U as computed by
                 *         pdgstrf(). Use column-wise storage scheme, i.e., U has types:
                 *         Stype = NCP, Dtype = _D, Mtype = TRU.
                 *
                 * perm_r  (input) int*
                 *         Row permutation vector of size L->nrow, which defines the
                 *         permutation matrix Pr; perm_r[i] = j means row i of A is in
                 *         position j in Pr*A.
                 *
                 * perm_c  (int*) dimension A->ncol
                 *	   Column permutation vector, which defines the 
                 *         permutation matrix Pc; perm_c[i] = j means column i of A is 
                 *         in position j in A*Pc.
                 *
                 * B       (input/output) SuperMatrix*
                 *         B has types: Stype = DN, Dtype = _D, Mtype = GE.
                 *         On entry, the right hand side matrix.
                 *         On exit, the solution matrix if info = 0;
                 *
                 * Gstat   (output) Gstat_t*
                 *          Record all the statistics about the triangular solves; 
                 *          See Gstat_t structure defined in slu_mt_util.h.
                 *
                 * info    (output) Diagnostics
                 * 	   = 0: successful exit
                 *	   < 0: if info = -i, the i-th argument had an illegal value
                 *
                 */
                #if ( MACH==CRAY_PVP )
                    _fcd ftcs1, ftcs2, ftcs3, ftcs4;
                #endif

                #ifdef USE_VENDOR_BLAS
                    int      incx = 1, incy = 1;
                    double   alpha = 1.0, beta = 1.0;
                #endif

                    register int j, k, jcol, iptr, luptr, ksupno, istart, irow, bptr;
                    register int fsupc, nsuper;
                    int      i, n, nsupc, nsupr, nrow, nrhs, ldb;
                    int      *supno;
                    DNformat *Bstore;
                    SCPformat *Lstore;
                    NCPformat *Ustore;
                    double   *Lval, *Uval, *Bmat;
                    double   *work, *work_col, *rhs_work, *soln;
                    flops_t  solve_ops;
                    void dprint_soln();

                    /* Test input parameters ... */
                    *info = 0;
                    Bstore = (DNformat*)B->Store;
                    ldb = Bstore->lda;
                    nrhs = B->ncol;
                    if ( trans != NOTRANS && trans != TRANS ) *info = -1;
                    else if ( L->nrow != L->ncol || L->nrow < 0 ) *info = -3;
                    else if ( U->nrow != U->ncol || U->nrow < 0 ) *info = -4;
                    else if ( ldb < SUPERLU_MAX(0, L->nrow) ) *info = -6;
                    if ( *info ) {
                        i = -(*info);
	                xerbla_("dgstrs", &i);
	                return;
                    }

                    n = L->nrow;
                    work = doubleCalloc(n * nrhs);
                    if ( !work ) SUPERLU_ABORT("Malloc fails for local work[].");
                    soln = doubleMalloc(n);
                    if ( !soln ) SUPERLU_ABORT("Malloc fails for local soln[].");

                    Bmat = (double*)Bstore->nzval;
                    Lstore = (SCPformat*)L->Store;
                    Lval = (double*)Lstore->nzval;
                    Ustore = (NCPformat*)U->Store;
                    Uval = (double*)Ustore->nzval;
                    supno = Lstore->col_to_sup;
                    nsuper = Lstore->nsuper;
                    solve_ops = 0;
    
                    if ( trans == NOTRANS ) {
	                /* Permute right hand sides to form Pr*B */
	                for (i = 0, bptr = 0; i < nrhs; i++, bptr += ldb) {
	                    rhs_work = &Bmat[bptr];
	                    for (k = 0; k < n; k++) soln[perm_r[k]] = rhs_work[k];
	                    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	                }
	
	                /* Forward solve PLy=Pb. */
                /*>>	for (k = 0; k < n; k += nsupc) {
	                    ksupno = supno[k];
                */
	                for (ksupno = 0; ksupno <= nsuper; ++ksupno) {
	                    fsupc = L_FST_SUPC(ksupno);
	                    istart = L_SUB_START(fsupc);
	                    nsupr = L_SUB_END(fsupc) - istart;
	                    nsupc = L_LAST_SUPC(ksupno) - fsupc;
	                    nrow = nsupr - nsupc;

	                    solve_ops += nsupc * (nsupc - 1) * nrhs;
	                    solve_ops += 2 * nrow * nsupc * nrhs;
	    
	                    if ( nsupc == 1 ) {
		                for (j = 0, bptr = 0; j < nrhs; j++, bptr += ldb) {
		                    rhs_work = &Bmat[bptr];
	    	                    luptr = L_NZ_START(fsupc);
		                    for (iptr=istart+1; iptr < L_SUB_END(fsupc); iptr++){
			                irow = L_SUB(iptr);
			                ++luptr;
                                        rhs_work[irow] -= rhs_work[fsupc] * Lval[luptr];
		                    }
		                }
	                    } else {
	    	                luptr = L_NZ_START(fsupc);
                #ifdef USE_VENDOR_BLAS
                #if ( MACH==CRAY_PVP )
		                ftcs1 = _cptofcd("L", strlen("L"));
		                ftcs2 = _cptofcd("N", strlen("N"));
		                ftcs3 = _cptofcd("U", strlen("U"));
 		                STRSM(ftcs1, ftcs1, ftcs2, ftcs3, &nsupc, &nrhs, &alpha,
		                      &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
		
		                SGEMM(ftcs2, ftcs2,  &nrow, &nrhs, &nsupc, &alpha, 
		                      &Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb, 
		                      &beta, &work[0], &n );
                #else
 		                dtrsm_("L", "L", "N", "U", &nsupc, &nrhs, &alpha,
		                       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
		
		                dgemm_( "N", "N", &nrow, &nrhs, &nsupc, &alpha, 
			                &Lval[luptr+nsupc], &nsupr, &Bmat[fsupc], &ldb, 
			                &beta, &work[0], &n );
                #endif
		                for (j = 0, bptr = 0; j < nrhs; j++, bptr += ldb) {
		                    rhs_work = &Bmat[bptr];
		                    work_col = &work[j*n];
		                    iptr = istart + nsupc;
		                    for (i = 0; i < nrow; i++) {
			                irow = L_SUB(iptr);
                                        rhs_work[irow] -= work_col[i]; /* Scatter */
                                        work_col[i] = 0.0;
			                iptr++;
		                    }
		                }
                #else		
		                for (j = 0, bptr = 0; j < nrhs; j++, bptr += ldb) {
		                    rhs_work = &Bmat[bptr];
		                    dlsolve (nsupr, nsupc, &Lval[luptr], &rhs_work[fsupc]);
		                    dmatvec (nsupr, nrow, nsupc, &Lval[luptr+nsupc],
			                     &rhs_work[fsupc], &work[0] );

		                    iptr = istart + nsupc;
		                    for (i = 0; i < nrow; i++) {
			                irow = L_SUB(iptr);
                                        rhs_work[irow] -= work[i];
                                        work[i] = 0.0;
			                iptr++;
		                    }
		                }
                #endif		    
	                    } /* if-else: nsupc == 1 ... */
	                } /* for L-solve */

                #if ( DEBUGlevel>=2 )
  	                printf("After L-solve: y=\n");
	                dprint_soln(n, nrhs, Bmat);
                #endif

	                /*
	                 * Back solve Ux=y.
	                 */
                /*>>	for (k = n-1; k >= 0; k -= nsupc) {
	                    ksupno = supno[k];
                */
	                for (ksupno = nsuper; ksupno >= 0; --ksupno) {
	                    fsupc = L_FST_SUPC(ksupno);
	                    istart = L_SUB_START(fsupc);
	                    nsupr = L_SUB_END(fsupc) - istart;
	                    nsupc = L_LAST_SUPC(ksupno) - fsupc;
	                    luptr = L_NZ_START(fsupc);

	                    solve_ops += nsupc * (nsupc + 1) * nrhs;

	                    /* dense triangular matrix */
	                    if ( nsupc == 1 ) {
		                rhs_work = &Bmat[0];
		                for (j = 0; j < nrhs; j++) {
                                    rhs_work[fsupc] /= Lval[luptr];
		                    rhs_work += ldb;
		                }
	                    } else {
                #ifdef USE_VENDOR_BLAS
                #if ( MACH==CRAY_PVP )
		                ftcs1 = _cptofcd("L", strlen("L"));
		                ftcs2 = _cptofcd("U", strlen("U"));
		                ftcs3 = _cptofcd("N", strlen("N"));
		                STRSM(ftcs1, ftcs2, ftcs3, ftcs3, &nsupc, &nrhs, &alpha,
		                      &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
                #else
		                dtrsm_("L", "U", "N", "N", &nsupc, &nrhs, &alpha,
		                       &Lval[luptr], &nsupr, &Bmat[fsupc], &ldb);
                #endif
                #else		
		                for (j = 0, bptr = fsupc; j < nrhs; j++, bptr += ldb) {
		                    dusolve (nsupr, nsupc, &Lval[luptr], &Bmat[bptr]);
		                }
                #endif		
	                    }

	                    /* matrix-vector update */
	                    for (j = 0, bptr = 0; j < nrhs; ++j, bptr += ldb) {
		                rhs_work = &Bmat[bptr];
		                for (jcol = fsupc; jcol < fsupc + nsupc; jcol++) {
                                    solve_ops += 2*(U_NZ_END(jcol) - U_NZ_START(jcol));
		                    for (i = U_NZ_START(jcol); i < U_NZ_END(jcol); i++ ){
			                irow = U_SUB(i);
                                        rhs_work[irow] -= rhs_work[jcol] * Uval[i];
		                    }
		                }
	                    }
	    
	                } /* for U-solve */

                #if ( DEBUGlevel>=2 )
  	                printf("After U-solve: x=\n");
	                dprint_soln(n, nrhs, Bmat);
                #endif

	                /* Compute the final solution X <= Pc*X. */
	                for (i = 0, bptr = 0; i < nrhs; i++, bptr += ldb) {
	                    rhs_work = &Bmat[bptr];
	                    for (k = 0; k < n; k++) soln[k] = rhs_work[perm_c[k]];
	                    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	                }
	
                    } else { /* Solve A'*X=B */
	                /* Permute right hand sides to form Pc'*B. */
	                for (i = 0, bptr = 0; i < nrhs; i++, bptr += ldb) {
	                    rhs_work = &Bmat[bptr];
	                    for (k = 0; k < n; k++) soln[perm_c[k]] = rhs_work[k];
	                    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	                }
	
                        for (k = 0; k < nrhs; ++k) {

                            /* Multiply by inv(U'). */
                            sp_dtrsv("U", "T", "N", L, U, &Bmat[k*ldb], info);

                            /* Multiply by inv(L'). */
                            sp_dtrsv("L", "T", "U", L, U, &Bmat[k*ldb], info);

                        }
	                /* Compute the final solution X <= Pr'*X (=inv(Pr)*X) */
	                for (i = 0, bptr = 0; i < nrhs; i++, bptr += ldb) {
	                    rhs_work = &Bmat[bptr];
	                    for (k = 0; k < n; k++) soln[k] = rhs_work[perm_r[k]];
	                    for (k = 0; k < n; k++) rhs_work[k] = soln[k];
	                }

                    } /* if-else trans */

                    Gstat->ops[int(PhaseType::TRISOLVE)] = solve_ops;
                    SUPERLU_FREE(work);
                    SUPERLU_FREE(soln);
                }

                /*
                 * Diagnostic print of the solution vector
                 */
                void
                dprint_soln(int n, int nrhs, double *soln)
                {
                    int i;

                    for (i = 0; i < n; i++)
	                printf("\t%d: %.10f\n", i, soln[i]);
                }
            };
        };
    };
};

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Architect Sea Surveillance AS
Norway Norway
Chief Architect - Sea Surveillance AS.

Specializing in integrated operations and high performance computing solutions.

I’ve been fooling around with computers since the early eighties, I’ve even done work on CP/M and MP/M.

Wrote my first “real” program on a BBC micro model B based on a series in a magazine at that time. It was fun and I got hooked on this thing called programming ...

A few Highlights:

  • High performance application server development
  • Model Driven Architecture and Code generators
  • Real-Time Distributed Solutions
  • C, C++, C#, Java, TSQL, PL/SQL, Delphi, ActionScript, Perl, Rexx
  • Microsoft SQL Server, Oracle RDBMS, IBM DB2, PostGreSQL
  • AMQP, Apache qpid, RabbitMQ, Microsoft Message Queuing, IBM WebSphereMQ, Oracle TuxidoMQ
  • Oracle WebLogic, IBM WebSphere
  • Corba, COM, DCE, WCF
  • AspenTech InfoPlus.21(IP21), OsiSoft PI


More information about what I do for a living can be found at: harlinn.com or LinkedIn

You can contact me at espen@harlinn.no

Comments and Discussions