Click here to Skip to main content
15,881,559 members
Articles / Desktop Programming / Win32

Windows Development in C++, Working with Menus

Rate me:
Please Sign up or sign in to vote.
4.96/5 (60 votes)
3 Jan 2015CPOL19 min read 171.5K   4.1K   163  
Windows API, menus, C++ lambda expressions, std::enable_shared_from_this
// hnummatrix.h
#pragma once

#ifndef __HNUMMATRIX_H__
#define __HNUMMATRIX_H__

#include "hnumdef.h"

namespace harlinn
{
    namespace numerics
    {
        enum class MatrixStorageType
        {
            // column-wise, no supernode
            NC,    
            // column-wise, column-permuted, no supernode 
            // (The consecutive columns of nonzeros, after permutation, may not be stored  contiguously.) 
            NCP,   
            // row-wize, no supernode
            NR,    
            // column-wise, supernode
            SC,    
            // supernode, column-wise, permuted
            SCP,   
            // row-wise, supernode
            SR,    
            // Fortran style column-wise storage for dense matrix
            DN,     
            // distributed compressed row format
            NR_loc  
        };


        enum class MatrixDataType
        {
            // float
            S, 
            // double
            D,
            // std::complex<float>
            C,
            // std::complex<double>
            Z
        };

        




        enum class MatrixType
        {
            // general
            GE, 
            // lower triangular, unit diagonal
            TRLU,  
            // upper triangular, unit diagonal 
            TRUU,  
            // lower triangular
            TRL,   
            // upper triangular
            TRU,   
            // symmetric, store lower half 
            SYL,   
            // symmetric, store upper half 
            SYU,   
            // Hermitian, store lower half
            HEL,   
            // Hermitian, store upper half
            HEU    
        };

        /* Stype == SLU_NC (Also known as Harwell-Boeing sparse matrix format) */
        template<typename T, typename int_t = int>
        struct NCFormat
        {
            static MatrixStorageType StorageType()
            {
                return MatrixStorageType::NC;
            }
            // number of nonzeros in the matrix
            int_t  nnz;
            // pointer to array of nonzero values, packed by column 
            T *nzval;

            // pointer to array of row indices of the nonzeros 
            int_t  *rowind; 
            // pointer to array of beginning of columns in nzval[] and rowind[]
            int_t  *colptr; 
            // Note: 
            //  Zero-based indexing is used; colptr[] has ncol+1 entries, 
            //  the last one pointing beyond the last column, 
            //  so that colptr[ncol] = nnz. 


        };

        /* Stype == SLU_NR */
        template<typename T, typename int_t = int>
        struct NRFormat
        {
            static MatrixStorageType StorageType()
            {
                return MatrixStorageType::NR;
            }

            // number of nonzeros in the matrix 
            int_t  nnz;
            // pointer to array of nonzero values, packed by raw 
            T* nzval;

            // pointer to array of columns indices of the nonzeros 
            int_t  *colind;
            // pointer to array of beginning of rows in nzval[] and colind[] 
            int_t  *rowptr; 
            // Note:
		    //  Zero-based indexing is used;
		    //  rowptr[] has nrow+1 entries, the last one pointing
		    //  beyond the last row, so that rowptr[nrow] = nnz. 
        };

        /* Stype == SLU_SC */
        template<typename T, typename int_t = int>
        struct SCFormat
        {
            static MatrixStorageType StorageType()
            {
                return MatrixStorageType::SC;
            }

            int_t  nsuper;     /* number of supernodes, minus 1 */

            int_t  nnz;	     /* number of nonzeros in the matrix */
            T *nzval;       /* pointer to array of nonzero values, packed by column */
            int_t *nzval_colptr;/* pointer to array of beginning of columns in nzval[] */
            int_t *rowind;     /* pointer to array of compressed row indices of 
			        rectangular supernodes */
            int_t *rowind_colptr;/* pointer to array of beginning of columns in rowind[] */
            int_t *col_to_sup;   /* col_to_sup[j] is the supernode number to which column 
			        j belongs; mapping from column to supernode number. */
            int_t *sup_to_col;   /* sup_to_col[s] points to the start of the s-th 
			        supernode; mapping from supernode number to column.
		                e.g.: col_to_sup: 0 1 2 2 3 3 3 4 4 4 4 4 4 (ncol=12)
		                        sup_to_col: 0 1 2 4 7 12           (nsuper=4) */
                                /* Note:
		                Zero-based indexing is used;
		                nzval_colptr[], rowind_colptr[], col_to_sup and
		                sup_to_col[] have ncol+1 entries, the last one
		                pointing beyond the last column.
		                For col_to_sup[], only the first ncol entries are
		                defined. For sup_to_col[], only the first nsuper+2
		                entries are defined. */
        };

        /* Stype == SLU_SCP */
        template<typename T, typename int_t = int>
        struct SCPFormat
        {
            static MatrixStorageType StorageType()
            {
                return MatrixStorageType::SCP;
            }

            /* number of supernodes */
            int_t  nsuper; 
            /* number of nonzeros in the matrix */
            int_t  nnz;	 
            /* pointer to array of nonzero values, packed by column */
            T* nzval;
            /* nzval_colbeg[j] points to beginning of column j in nzval[] */
            int_t  *nzval_colbeg;
            /* nzval_colend[j] points to one past the last element of column j in nzval[] */
            int_t  *nzval_colend;
            /* pointer to array of compressed row indices of rectangular supernodes */
            int_t  *rowind; 
            /* rowind_colbeg[j] points to beginning of column j in rowind[] */
            int_t *rowind_colbeg;
            /* rowind_colend[j] points to one past the last element of column j in rowind[] */
            int_t *rowind_colend;
            /* col_to_sup[j] is the supernode number to which column j belongs; mapping from column to supernode. */
            int_t *col_to_sup; 
            /* sup_to_colbeg[s] points to the start of the s-th  supernode; mapping from supernode to column.*/
            int_t *sup_to_colbeg; 

            /* sup_to_colend[s] points to one past the end of the
			   s-th supernode; mapping from supernode number to
			   column.
		       e.g.: col_to_sup: 0 1 2 2 3 3 3 4 4 4 4 4 4 (ncol=12)
		               sup_to_colbeg: 0 1 2 4 7              (nsuper=4)
			        sup_to_colend: 1 2 4 7 12
             */
            int_t *sup_to_colend; 
            /* Note:
		     Zero-based indexing is used;
		     nzval_colptr[], rowind_colptr[], col_to_sup and
		     sup_to_col[] have ncol+1 entries, the last one
		     pointing beyond the last column.         
             */
        };

        /* Stype == SLU_NCP */
        template<typename T, typename int_t = int>
        struct NCPFormat
        {
            static MatrixStorageType StorageType()
            {
                return MatrixStorageType::NCP;
            }

            /* number of nonzeros in the matrix */
            int_t nnz;
            /* pointer to array of nonzero values, packed by column */
            T* nzval;
            /* pointer to array of row indices of the nonzeros */
            /* Note: nzval[]/rowind[] always have the same length */
            int_t *rowind;
		    
            /* colbeg[j] points to the beginning of column j in nzval[] and rowind[]  */
            int_t *colbeg;
            /* colend[j] points to one past the last element of columnj in nzval[] and rowind[]  */
            int_t *colend;
		    /* Note:
		        Zero-based indexing is used;
		        The consecutive columns of the nonzeros may not be 
		        contiguous in storage, because the matrix has been 
		        postmultiplied by a column permutation matrix. */
        };

        /* Stype == SLU_DN */
        template<typename T, typename int_t = int>
        struct DNFormat
        {
            static MatrixStorageType StorageType()
            {
                return MatrixStorageType::DN;
            }

            /* leading dimension */
            int_t lda; 
            /* array of size lda*ncol to represent a dense matrix */
            void* nzval; 
        };

        /* Stype == SLU_NR_loc (Distributed Compressed Row Format) */
        template<typename T, typename int_t = int>
        struct NRFormatLoc
        {
            static MatrixStorageType StorageType()
            {
                return MatrixStorageType::NR_loc;
            }

            /* number of nonzeros in the local submatrix */
            int_t nnz_loc; 
            /* number of rows local to this processor */
            int_t m_loc;
            /* global index of the first row */
            int_t fst_row;
            /* pointer to array of nonzero values, packed by row */
            T* nzval;    
            /* pointer to array of beginning of rows in nzval[] and colind[]  */
            int_t *rowptr;
            /* pointer to array of column indices of the nonzeros */
            int_t *colind;
            /* Note:
			   Zero-based indexing is used;
			   rowptr[] has n_loc + 1 entries, the last one pointing
			   beyond the last row, so that rowptr[n_loc] = nnz_loc.
             */
        };


        template<typename T, typename int_t = int>
        class Matrix
        {
            class Data : public T
            {
                long referenceCount;
                MatrixType matrixType;
                // number of rows
                int_t  nrow;
                // number of columns
	            int_t  ncol;
            public:
                Data()
                    : referenceCount(1),
                      nrow(0),
                      ncol(0)
                {
                    T* ptr = this;
                    memset(ptr,0,sizeof(T));
                }

                long AddRef()
                {
                    return InterlockedIncrement(&referenceCount);
                }

                long Release()
                {
                    long result = InterlockedDecrement(&referenceCount);
                    if(!result)
                    {
                        delete this;
                    }
                    return result;
                }

                static MatrixStorageType StorageType()
                {
                    return T::StorageType();
                }


            };

            typedef Data data_t;
            mutable data_t* data;
            data_t* Data()
            {
                if(!data)
                {
                    data = new data_t();
                }
                return data;
            }

            const data_t* Data() const
            {
                if(!data)
                {
                    data = new data_t();
                }
                return data;
            }
        public:
            Matrix()
                : data(nullptr)
            {}
            Matrix(const Matrix& other)
                : data(other.data)
            {
                if(data)
                {
                    data->AddRef();
                }
            }
            Matrix(Matrix&& other)
                : data(other.data)
            {
                other.data = nullptr;
            }
            ~Matrix( )
            {
                if(data)
                {
                    data->Release();
                }
            }

            Matrix& operator = (const Matrix& other)
            {
                if(data != other.data)
                {
                    if(data)
                    {
                        data->Release();
                    }
                    data = other.data;
                    if(data)
                    {
                        data->AddRef();
                    }
                }
                return *this;
            }
            Matrix& operator = (Matrix&& other)
            {
                if(this != &other)
                {
                    if(data)
                    {
                        data->Release();
                    }
                    data = other.data;
                    if(data)
                    {
                        data->AddRef();
                    }
                }
                return *this;
            }

            static MatrixStorageType StorageType()
            {
                return T::StorageType();
            }

        };


        typedef Matrix< NCFormat< float > > MatrixNCS;
        typedef Matrix< NCFormat< double > > MatrixNCD;
        typedef Matrix< NCFormat< std::complex<float> > > MatrixNCC;
        typedef Matrix< NCFormat< std::complex<double> > > MatrixNCZ;
        typedef Matrix< NCPFormat< float > > MatrixNCPS;
        typedef Matrix< NCPFormat< double > > MatrixNCPD;
        typedef Matrix< NCPFormat< std::complex<float> > > MatrixNCPC;
        typedef Matrix< NCPFormat< std::complex<double> > > MatrixNCPZ;
        typedef Matrix< NRFormat< float > > MatrixNRS;
        typedef Matrix< NRFormat< double > > MatrixNRD;
        typedef Matrix< NRFormat< std::complex<float> > > MatrixNRC;
        typedef Matrix< NRFormat< std::complex<double> > > MatrixNRZ;
        typedef Matrix< SCFormat< float > > MatrixSCS;
        typedef Matrix< SCFormat< double > > MatrixSCD;
        typedef Matrix< SCFormat< std::complex<float> > > MatrixSCC;
        typedef Matrix< SCFormat< std::complex<double> > > MatrixSCZ;
        typedef Matrix< SCPFormat< float > > MatrixSCPS;
        typedef Matrix< SCPFormat< double > > MatrixSCPD;
        typedef Matrix< SCPFormat< std::complex<float> > > MatrixSCPC;
        typedef Matrix< SCPFormat< std::complex<double> > > MatrixSCPZ;
        typedef Matrix< DNFormat< float > > MatrixDNS;
        typedef Matrix< DNFormat< double > > MatrixDND;
        typedef Matrix< DNFormat< std::complex<float> > > MatrixDNC;
        typedef Matrix< DNFormat< std::complex<double> > > MatrixDNZ;
        typedef Matrix< NRFormatLoc< float > > MatrixNRLocS;
        typedef Matrix< NRFormatLoc< double > > MatrixNRLocD;
        typedef Matrix< NRFormatLoc< std::complex<float> > > MatrixNRLocC;
        typedef Matrix< NRFormatLoc< std::complex<double> > > MatrixNRLocZ;


        




    };
};


#endif // __HNUMMATRIX_H__

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Architect Sea Surveillance AS
Norway Norway
Chief Architect - Sea Surveillance AS.

Specializing in integrated operations and high performance computing solutions.

I’ve been fooling around with computers since the early eighties, I’ve even done work on CP/M and MP/M.

Wrote my first “real” program on a BBC micro model B based on a series in a magazine at that time. It was fun and I got hooked on this thing called programming ...

A few Highlights:

  • High performance application server development
  • Model Driven Architecture and Code generators
  • Real-Time Distributed Solutions
  • C, C++, C#, Java, TSQL, PL/SQL, Delphi, ActionScript, Perl, Rexx
  • Microsoft SQL Server, Oracle RDBMS, IBM DB2, PostGreSQL
  • AMQP, Apache qpid, RabbitMQ, Microsoft Message Queuing, IBM WebSphereMQ, Oracle TuxidoMQ
  • Oracle WebLogic, IBM WebSphere
  • Corba, COM, DCE, WCF
  • AspenTech InfoPlus.21(IP21), OsiSoft PI


More information about what I do for a living can be found at: harlinn.com or LinkedIn

You can contact me at espen@harlinn.no

Comments and Discussions