Click here to Skip to main content
15,881,882 members
Articles / Desktop Programming / Win32

Stopwatch

Rate me:
Please Sign up or sign in to vote.
4.97/5 (29 votes)
3 Jan 2015CPOL6 min read 66K   1.5K   43  
Benchmark C++ std::vector vs raw arrays, move assignable/constructable & copy assignable/constructable
#include "stdafx.h"

/*  -- translated by f2c (version 19940927).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "hnum_f2c.h"
namespace harlinn
{
    namespace numerics
    {
        namespace SuperLU
        {
            /* Subroutine */ 
            int zhemv_(char *uplo, integer *n, doublecomplex *alpha, 
	            doublecomplex *a, integer *lda, doublecomplex *x, integer *incx, 
	            doublecomplex *beta, doublecomplex *y, integer *incy)
            {


                /* System generated locals */
                integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
                doublereal d__1;
                doublecomplex z__1, z__2, z__3, z__4;

                /* Builtin functions */
                void d_cnjg(doublecomplex *, doublecomplex *);

                /* Local variables */
                static integer info;
                static doublecomplex temp1, temp2;
                static integer i, j;
                    
                static integer ix, iy, jx, jy, kx, ky;
                    


            /*  Purpose   
                =======   

                ZHEMV  performs the matrix-vector  operation   

                    y := alpha*A*x + beta*y,   

                where alpha and beta are scalars, x and y are n element vectors and   
                A is an n by n hermitian matrix.   

                Parameters   
                ==========   

                UPLO   - CHARACTER*1.   
                            On entry, UPLO specifies whether the upper or lower   
                            triangular part of the array A is to be referenced as   
                            follows:   

                            UPLO = 'U' or 'u'   Only the upper triangular part of A   
                                                is to be referenced.   

                            UPLO = 'L' or 'l'   Only the lower triangular part of A   
                                                is to be referenced.   

                            Unchanged on exit.   

                N      - INTEGER.   
                            On entry, N specifies the order of the matrix A.   
                            N must be at least zero.   
                            Unchanged on exit.   

                ALPHA  - COMPLEX*16      .   
                            On entry, ALPHA specifies the scalar alpha.   
                            Unchanged on exit.   

                A      - COMPLEX*16       array of DIMENSION ( LDA, n ).   
                            Before entry with  UPLO = 'U' or 'u', the leading n by n   
                            upper triangular part of the array A must contain the upper 
  
                            triangular part of the hermitian matrix and the strictly   
                            lower triangular part of A is not referenced.   
                            Before entry with UPLO = 'L' or 'l', the leading n by n   
                            lower triangular part of the array A must contain the lower 
  
                            triangular part of the hermitian matrix and the strictly   
                            upper triangular part of A is not referenced.   
                            Note that the imaginary parts of the diagonal elements need 
  
                            not be set and are assumed to be zero.   
                            Unchanged on exit.   

                LDA    - INTEGER.   
                            On entry, LDA specifies the first dimension of A as declared 
  
                            in the calling (sub) program. LDA must be at least   
                            max( 1, n ).   
                            Unchanged on exit.   

                X      - COMPLEX*16       array of dimension at least   
                            ( 1 + ( n - 1 )*abs( INCX ) ).   
                            Before entry, the incremented array X must contain the n   
                            element vector x.   
                            Unchanged on exit.   

                INCX   - INTEGER.   
                            On entry, INCX specifies the increment for the elements of   
                            X. INCX must not be zero.   
                            Unchanged on exit.   

                BETA   - COMPLEX*16      .   
                            On entry, BETA specifies the scalar beta. When BETA is   
                            supplied as zero then Y need not be set on input.   
                            Unchanged on exit.   

                Y      - COMPLEX*16       array of dimension at least   
                            ( 1 + ( n - 1 )*abs( INCY ) ).   
                            Before entry, the incremented array Y must contain the n   
                            element vector y. On exit, Y is overwritten by the updated   
                            vector y.   

                INCY   - INTEGER.   
                            On entry, INCY specifies the increment for the elements of   
                            Y. INCY must not be zero.   
                            Unchanged on exit.   


                Level 2 Blas routine.   

                -- Written on 22-October-1986.   
                    Jack Dongarra, Argonne National Lab.   
                    Jeremy Du Croz, Nag Central Office.   
                    Sven Hammarling, Nag Central Office.   
                    Richard Hanson, Sandia National Labs.   



                    Test the input parameters.   

    
                Parameter adjustments   
                    Function Body */
            #define X(I) x[(I)-1]
            #define Y(I) y[(I)-1]

            #define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]

                info = 0;
                if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	            info = 1;
                } else if (*n < 0) {
	            info = 2;
                }
                else if ( *lda < std::max( 1, *n ) )
                {
	            info = 5;
                } else if (*incx == 0) {
	            info = 7;
                } else if (*incy == 0) {
	            info = 10;
                }
                if (info != 0) {
	            xerbla_("ZHEMV ", &info);
	            return 0;
                }

            /*     Quick return if possible. */

                if (*n == 0 || alpha->r == 0. && alpha->i == 0. && (beta->r == 1. && 
	                beta->i == 0.)) {
	            return 0;
                }

            /*     Set up the start points in  X  and  Y. */

                if (*incx > 0) {
	            kx = 1;
                } else {
	            kx = 1 - (*n - 1) * *incx;
                }
                if (*incy > 0) {
	            ky = 1;
                } else {
	            ky = 1 - (*n - 1) * *incy;
                }

            /*     Start the operations. In this version the elements of A are   
                    accessed sequentially with one pass through the triangular part   
                    of A.   

                    First form  y := beta*y. */

                if (beta->r != 1. || beta->i != 0.) {
	            if (*incy == 1) {
	                if (beta->r == 0. && beta->i == 0.) {
		            i__1 = *n;
		            for (i = 1; i <= *n; ++i) {
		                i__2 = i;
		                Y(i).r = 0., Y(i).i = 0.;
            /* L10: */
		            }
	                } else {
		            i__1 = *n;
		            for (i = 1; i <= *n; ++i) {
		                i__2 = i;
		                i__3 = i;
		                z__1.r = beta->r * Y(i).r - beta->i * Y(i).i, 
			                z__1.i = beta->r * Y(i).i + beta->i * Y(i)
			                .r;
		                Y(i).r = z__1.r, Y(i).i = z__1.i;
            /* L20: */
		            }
	                }
	            } else {
	                iy = ky;
	                if (beta->r == 0. && beta->i == 0.) {
		            i__1 = *n;
		            for (i = 1; i <= *n; ++i) {
		                i__2 = iy;
		                Y(iy).r = 0., Y(iy).i = 0.;
		                iy += *incy;
            /* L30: */
		            }
	                } else {
		            i__1 = *n;
		            for (i = 1; i <= *n; ++i) {
		                i__2 = iy;
		                i__3 = iy;
		                z__1.r = beta->r * Y(iy).r - beta->i * Y(iy).i, 
			                z__1.i = beta->r * Y(iy).i + beta->i * Y(iy)
			                .r;
		                Y(iy).r = z__1.r, Y(iy).i = z__1.i;
		                iy += *incy;
            /* L40: */
		            }
	                }
	            }
                }
                if (alpha->r == 0. && alpha->i == 0.) {
	            return 0;
                }
                if (lsame_(uplo, "U")) {

            /*        Form  y  when A is stored in upper triangle. */

	            if (*incx == 1 && *incy == 1) {
	                i__1 = *n;
	                for (j = 1; j <= *n; ++j) {
		            i__2 = j;
		            z__1.r = alpha->r * X(j).r - alpha->i * X(j).i, z__1.i =
			                alpha->r * X(j).i + alpha->i * X(j).r;
		            temp1.r = z__1.r, temp1.i = z__1.i;
		            temp2.r = 0., temp2.i = 0.;
		            i__2 = j - 1;
		            for (i = 1; i <= j-1; ++i) {
		                i__3 = i;
		                i__4 = i;
		                i__5 = i + j * a_dim1;
		                z__2.r = temp1.r * A(i,j).r - temp1.i * A(i,j).i, 
			                z__2.i = temp1.r * A(i,j).i + temp1.i * A(i,j)
			                .r;
		                z__1.r = Y(i).r + z__2.r, z__1.i = Y(i).i + z__2.i;
		                Y(i).r = z__1.r, Y(i).i = z__1.i;
		                d_cnjg(&z__3, &A(i,j));
		                i__3 = i;
		                z__2.r = z__3.r * X(i).r - z__3.i * X(i).i, z__2.i =
			                    z__3.r * X(i).i + z__3.i * X(i).r;
		                z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
		                temp2.r = z__1.r, temp2.i = z__1.i;
            /* L50: */
		            }
		            i__2 = j;
		            i__3 = j;
		            i__4 = j + j * a_dim1;
		            d__1 = A(j,j).r;
		            z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
		            z__2.r = Y(j).r + z__3.r, z__2.i = Y(j).i + z__3.i;
		            z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i = 
			            alpha->r * temp2.i + alpha->i * temp2.r;
		            z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
		            Y(j).r = z__1.r, Y(j).i = z__1.i;
            /* L60: */
	                }
	            } else {
	                jx = kx;
	                jy = ky;
	                i__1 = *n;
	                for (j = 1; j <= *n; ++j) {
		            i__2 = jx;
		            z__1.r = alpha->r * X(jx).r - alpha->i * X(jx).i, z__1.i =
			                alpha->r * X(jx).i + alpha->i * X(jx).r;
		            temp1.r = z__1.r, temp1.i = z__1.i;
		            temp2.r = 0., temp2.i = 0.;
		            ix = kx;
		            iy = ky;
		            i__2 = j - 1;
		            for (i = 1; i <= j-1; ++i) {
		                i__3 = iy;
		                i__4 = iy;
		                i__5 = i + j * a_dim1;
		                z__2.r = temp1.r * A(i,j).r - temp1.i * A(i,j).i, 
			                z__2.i = temp1.r * A(i,j).i + temp1.i * A(i,j)
			                .r;
		                z__1.r = Y(iy).r + z__2.r, z__1.i = Y(iy).i + z__2.i;
		                Y(iy).r = z__1.r, Y(iy).i = z__1.i;
		                d_cnjg(&z__3, &A(i,j));
		                i__3 = ix;
		                z__2.r = z__3.r * X(ix).r - z__3.i * X(ix).i, z__2.i =
			                    z__3.r * X(ix).i + z__3.i * X(ix).r;
		                z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
		                temp2.r = z__1.r, temp2.i = z__1.i;
		                ix += *incx;
		                iy += *incy;
            /* L70: */
		            }
		            i__2 = jy;
		            i__3 = jy;
		            i__4 = j + j * a_dim1;
		            d__1 = A(j,j).r;
		            z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
		            z__2.r = Y(jy).r + z__3.r, z__2.i = Y(jy).i + z__3.i;
		            z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i = 
			            alpha->r * temp2.i + alpha->i * temp2.r;
		            z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
		            Y(jy).r = z__1.r, Y(jy).i = z__1.i;
		            jx += *incx;
		            jy += *incy;
            /* L80: */
	                }
	            }
                } else {

            /*        Form  y  when A is stored in lower triangle. */

	            if (*incx == 1 && *incy == 1) {
	                i__1 = *n;
	                for (j = 1; j <= *n; ++j) {
		            i__2 = j;
		            z__1.r = alpha->r * X(j).r - alpha->i * X(j).i, z__1.i =
			                alpha->r * X(j).i + alpha->i * X(j).r;
		            temp1.r = z__1.r, temp1.i = z__1.i;
		            temp2.r = 0., temp2.i = 0.;
		            i__2 = j;
		            i__3 = j;
		            i__4 = j + j * a_dim1;
		            d__1 = A(j,j).r;
		            z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
		            z__1.r = Y(j).r + z__2.r, z__1.i = Y(j).i + z__2.i;
		            Y(j).r = z__1.r, Y(j).i = z__1.i;
		            i__2 = *n;
		            for (i = j + 1; i <= *n; ++i) {
		                i__3 = i;
		                i__4 = i;
		                i__5 = i + j * a_dim1;
		                z__2.r = temp1.r * A(i,j).r - temp1.i * A(i,j).i, 
			                z__2.i = temp1.r * A(i,j).i + temp1.i * A(i,j)
			                .r;
		                z__1.r = Y(i).r + z__2.r, z__1.i = Y(i).i + z__2.i;
		                Y(i).r = z__1.r, Y(i).i = z__1.i;
		                d_cnjg(&z__3, &A(i,j));
		                i__3 = i;
		                z__2.r = z__3.r * X(i).r - z__3.i * X(i).i, z__2.i =
			                    z__3.r * X(i).i + z__3.i * X(i).r;
		                z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
		                temp2.r = z__1.r, temp2.i = z__1.i;
            /* L90: */
		            }
		            i__2 = j;
		            i__3 = j;
		            z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i = 
			            alpha->r * temp2.i + alpha->i * temp2.r;
		            z__1.r = Y(j).r + z__2.r, z__1.i = Y(j).i + z__2.i;
		            Y(j).r = z__1.r, Y(j).i = z__1.i;
            /* L100: */
	                }
	            } else {
	                jx = kx;
	                jy = ky;
	                i__1 = *n;
	                for (j = 1; j <= *n; ++j) {
		            i__2 = jx;
		            z__1.r = alpha->r * X(jx).r - alpha->i * X(jx).i, z__1.i =
			                alpha->r * X(jx).i + alpha->i * X(jx).r;
		            temp1.r = z__1.r, temp1.i = z__1.i;
		            temp2.r = 0., temp2.i = 0.;
		            i__2 = jy;
		            i__3 = jy;
		            i__4 = j + j * a_dim1;
		            d__1 = A(j,j).r;
		            z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
		            z__1.r = Y(jy).r + z__2.r, z__1.i = Y(jy).i + z__2.i;
		            Y(jy).r = z__1.r, Y(jy).i = z__1.i;
		            ix = jx;
		            iy = jy;
		            i__2 = *n;
		            for (i = j + 1; i <= *n; ++i) {
		                ix += *incx;
		                iy += *incy;
		                i__3 = iy;
		                i__4 = iy;
		                i__5 = i + j * a_dim1;
		                z__2.r = temp1.r * A(i,j).r - temp1.i * A(i,j).i, 
			                z__2.i = temp1.r * A(i,j).i + temp1.i * A(i,j)
			                .r;
		                z__1.r = Y(iy).r + z__2.r, z__1.i = Y(iy).i + z__2.i;
		                Y(iy).r = z__1.r, Y(iy).i = z__1.i;
		                d_cnjg(&z__3, &A(i,j));
		                i__3 = ix;
		                z__2.r = z__3.r * X(ix).r - z__3.i * X(ix).i, z__2.i =
			                    z__3.r * X(ix).i + z__3.i * X(ix).r;
		                z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
		                temp2.r = z__1.r, temp2.i = z__1.i;
            /* L110: */
		            }
		            i__2 = jy;
		            i__3 = jy;
		            z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i = 
			            alpha->r * temp2.i + alpha->i * temp2.r;
		            z__1.r = Y(jy).r + z__2.r, z__1.i = Y(jy).i + z__2.i;
		            Y(jy).r = z__1.r, Y(jy).i = z__1.i;
		            jx += *incx;
		            jy += *incy;
            /* L120: */
	                }
	            }
                }

                return 0;

            /*     End of ZHEMV . */

            } /* zhemv_ */

        };
    };
};

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Architect Sea Surveillance AS
Norway Norway
Chief Architect - Sea Surveillance AS.

Specializing in integrated operations and high performance computing solutions.

I’ve been fooling around with computers since the early eighties, I’ve even done work on CP/M and MP/M.

Wrote my first “real” program on a BBC micro model B based on a series in a magazine at that time. It was fun and I got hooked on this thing called programming ...

A few Highlights:

  • High performance application server development
  • Model Driven Architecture and Code generators
  • Real-Time Distributed Solutions
  • C, C++, C#, Java, TSQL, PL/SQL, Delphi, ActionScript, Perl, Rexx
  • Microsoft SQL Server, Oracle RDBMS, IBM DB2, PostGreSQL
  • AMQP, Apache qpid, RabbitMQ, Microsoft Message Queuing, IBM WebSphereMQ, Oracle TuxidoMQ
  • Oracle WebLogic, IBM WebSphere
  • Corba, COM, DCE, WCF
  • AspenTech InfoPlus.21(IP21), OsiSoft PI


More information about what I do for a living can be found at: harlinn.com or LinkedIn

You can contact me at espen@harlinn.no

Comments and Discussions