Click here to Skip to main content
12,952,792 members (35,074 online)
Click here to Skip to main content

Stats

60.9K views
1.2K downloads
26 bookmarked
Posted 16 Oct 2012

JavaScript Machine Learning and Neural Networks with Encog

, 16 Oct 2012 Apache
Use Encog genetic algorithms, simulated annealing, neural networks and more with HTML5 Javascript.
<!DOCTYPE html>
<html>
<head>
    <title></title>
</head>
<body>

<style type="text/css"><!--
#example-holder
{
    border: 1px solid #000;
    padding:5px;
    background: #c0c0c0;
    width: 500px;
    height: 640px;
    position: relative;
}

.colorOption
{
    border: 1px solid #000;
    width: 16px;
    height: 16px;
    position: relative;
    display: inline-block;
}

#divGrid
{
    border: 1px solid #000;
    background: white;
    width:500px;
    height:500px;
    position: absolute;
    display: inline;
}


#example-btn1
{
    border: 1px solid #000;
    padding: 2px;
    position: absolute;
    display: inline;
    width: 495px;
    top:510px;
}

.test { color: red }
--></style><div id="example-holder">
    <div id="divGrid"></div><div id="example-btn1">
    <input id="btnStart" type="button" value="Start" /><input id="btnStop" type="button" value="Stop" /><input id="btnSingle" type="button" value="Single" /><input id="btnClear" type="button" value="Clear" /><br />Network Type:<select id="selType"><option>2:3</option><option>2:1:3</option><option>2:5:3</option><option>2:10:3</option><option>2:15:3</option><option selected="selected">2:20:3</option><option>2:25:3</option><option>2:50:3</option><option>2:100:3</option><option>2:5:5:3</option><option>2:10:5:3</option><option>2:10:10:3</option><option>2:20:20:3</option><option>2:50:50:3</option></select><input id="btnRetrain" type="button" value="Retrain" /><br />Patterns:<input id="btnRandom2Color" type="button" value="Random 2-Color" /><input id="btnRandomManyColor" type="button" value="Random Many-Color" /><input id="btnDualSpiral" type="button" value="Dual Spiral" /><div id="c1" class="colorOption" style="background:green;"></div><div id="c2" class="colorOption" style="background:yellow;"></div><div id="c3" class="colorOption" style="background:blue;"></div><div id="c4" class="colorOption" style="background:red;"></div><div id="c5" class="colorOption" style="background:white;"></div><p id="pOutput"> </p>
</div>

</div>
<script src="../encog.js"></script>
<script src="../encog-widget.js"></script>
<script type="text/javascript">
<!--//--><![CDATA[// ><!--

"use strict";
if(window.addEventListener) {
    window.addEventListener('load', function () {

        var currentColor = [1,0,0];
        var backgroundTimer;
        var btnStart, btnStop, btnClear, btnSingle, btnRetrain;
        var btnRandom2Color,btnRandomManyColor,btnDualSpiral;
        var pOutput;
        var iteration;
        var selType;


        var GRID_WIDTH = 100;
        var GRID_HEIGHT = 100;
        var pixW, pixH;
        var running = false;
        var grid;

        var network,trainingInput,trainingIdeal,train;

        function init () {

            grid = ENCOG.GUI.CellGrid.create('divGrid', GRID_WIDTH, GRID_HEIGHT, 500, 500);
            grid.pointerMode = ENCOG.GUI.CellGrid.MODE_PCT;

            // Attach the mousedown, mousemove and mouseup event listeners.
            btnStart = document.getElementById('btnStart');
            btnStop = document.getElementById('btnStop');
            btnClear = document.getElementById('btnClear');
            btnSingle = document.getElementById('btnSingle');
            btnRetrain = document.getElementById('btnRetrain');
            btnRandom2Color = document.getElementById('btnRandom2Color');
            btnRandomManyColor = document.getElementById('btnRandomManyColor');
            btnDualSpiral = document.getElementById('btnDualSpiral');
            pOutput = document.getElementById('pOutput');
            selType = document.getElementById('selType');

            btnStart.addEventListener('click', ev_start, false);
            btnStop.addEventListener('click', ev_stop, false);
            btnClear.addEventListener('click', ev_clear, false);
            btnSingle.addEventListener('click', ev_single, false);
            btnRetrain.addEventListener('click', ev_retrain, false);
            btnRandom2Color.addEventListener('click', ev_random2Color, false);
            btnRandomManyColor.addEventListener('click', ev_randomManyColor, false);
            btnDualSpiral.addEventListener('click', ev_dualSpiral, false);

            var c1 = document.getElementById('c1');
            var c2 = document.getElementById('c2');
            var c3 = document.getElementById('c3');
            var c4 = document.getElementById('c4');
            var c5 = document.getElementById('c5');
            c1.clr = [0,1,0];
            c2.clr = [1,1,0];
            c3.clr = [0,0,1];
            c4.clr = [1,0,0];
            c5.clr = [1,1,1];

            c1.addEventListener('click', ev_color, true);
            c2.addEventListener('click', ev_color, true);
            c3.addEventListener('click', ev_color, true);
            c4.addEventListener('click', ev_color, true);
            c5.addEventListener('click', ev_color, true);

            trainingInput = [];
            trainingIdeal = [];

            grid.pointerDown = function(row,col) {
                trainingInput.push([col,row]);
                trainingIdeal.push(currentColor);
                plotPoints();
            };

            grid.determineColor = function(row,col) {
                var input, rowAdjust, colAdjust, output, r, g, b;
                output = {};
                rowAdjust = 1.0 / grid.gridHeight;
                colAdjust = 1.0 / grid.gridWidth;

                input = [ col * colAdjust, row * rowAdjust ];
                network.compute(input, output);

                r = Math.floor(output[0] * 255);
                g = Math.floor(output[1] * 255);
                b = Math.floor(output[2] * 255);

                return "rgb(" + r + "," + g + "," + b + ")";
            };

            ev_retrain(null);
            ev_clear(null);

        }

        /////////////////////////////////////////////////////////////////////////////
        // Event functions
        /////////////////////////////////////////////////////////////////////////////

        function ev_color(ev)
        {
            'use strict';
            currentColor = ev.target.clr;
        }

        function ev_random2Color(ev)
        {
            'use strict';
            var i;
            ev_clear(null);
            for(i=0;i<25;i++)
            {
                trainingInput.push([ Math.random(), Math.random()]);
                trainingIdeal.push([ 1,0,0]);
            }
            for(i=0;i<25;i++)
            {
                trainingInput.push([ Math.random(), Math.random()]);
                trainingIdeal.push([ 0,0,1]);
            }
            grid.clear();
            plotPoints();
        }

        function ev_randomManyColor(ev)
        {
            'use strict';
            ev_clear(null);
            for(var i=0;i<50;i++)
            {
                trainingInput.push([ Math.random(), Math.random()]);
                trainingIdeal.push([ Math.random(), Math.random(), Math.random()]);
            }
            grid.clear();
            plotPoints();
        }

        function ev_dualSpiral(ev)
        {
            'use strict';
            ev_clear(null);
            var angInc = Math.PI/40;
            var sz = 0.05;
            for(var i=0;i<(4*Math.PI);i+=angInc)
            {
                var x = (Math.sin(i)*sz)+0.5;
                var y = (Math.cos(i)*sz)+0.5;
                trainingInput.push([ x,y ]);
                trainingIdeal.push([ 1,0,0]);

                x = (Math.sin(i)*(sz+0.08))+0.5;
                y = (Math.cos(i)*(sz+0.08))+0.5;
                trainingInput.push([ x,y ]);
                trainingIdeal.push([ 0,0,1]);

                sz+=0.002;
            }
            grid.clear();
            plotPoints();
        }

        function ev_retrain(ev)
        {
            'use strict';
            ev_stop(null);

            // parse the network type
            var str = selType.value;
            var a = str.split(':');
            var layers = [];

            for(var i=0;i<a.length;i++)
            {
                layers[i] = ENCOG.BasicLayer.create(ENCOG.ActivationSigmoid.create(),parseInt(a[i]),1);
            }

            network = ENCOG.BasicNetwork.create( layers );

            // setup for training
            iteration = 0;
            network.randomize();
            train = ENCOG.PropagationTrainer.create(network,trainingInput,trainingIdeal,"RPROP",0.1,0.3);
            grid.clear();
            plotPoints();
            pOutput.innerHTML = "Ready";
        }

        function ev_start(ev)
        {
            'use strict';
            if( !running )
            {
                if( trainingInput.length<2 )
                {
                    alert("Please add at least 2 dots of different colors.");
                    return;
                }
                backgroundTimer = self.setInterval(ev_animate,100);
                btnStart.disabled = true;
                btnStop.disabled = false;
                btnSingle.disabled = true;
                running = true;
            }
        }

        function ev_stop(ev)
        {
            'use strict';
            if( running )
            {
                self.clearInterval(backgroundTimer);
                btnStart.disabled = false;
                btnStop.disabled = true;
                btnSingle.disabled = false;
                running = false;
            }
        }

        function ev_clear(ev)
        {
            'use strict';
            ev_stop(null);
            trainingInput.length = 0;
            trainingIdeal.length = 0;
            ev_retrain(null);
            grid.clear();
        }

        function ev_single(ev)
        {
            'use strict';
            ev_animate();
        }

        function plotPoints()
        {
            'use strict';
            var x, y, r, g, b, c;

            for(var i=0;i<trainingInput.length;i++)
            {
                x = trainingInput[i][0] * grid.canvas.width;
                y = trainingInput[i][1] * grid.canvas.height;
                r = Math.floor(trainingIdeal[i][0] * 255);
                g = Math.floor(trainingIdeal[i][1] * 255);
                b = Math.floor(trainingIdeal[i][2] * 255);
                c = "rgb(" + r + "," + g + "," + b + ")";
                grid.drawingContext.fillStyle = c;
                grid.drawingContext.fillRect(x,y,5,5);
                grid.drawingContext.strokeRect(x,y,5,5);
            }
        }

        function ev_animate()
        {
            'use strict';
            var i;

            grid.render();

            plotPoints();

            iteration+=10;
            pOutput.innerHTML = "Iteration: " + iteration + ", Error: " + train.error;

            for(i=0;i<10;i++) {
                train.iteration();
            }

        }

        // cause the init function to be called.
        init();

    }, false); }

//--><!]]>
</script>

</body>
</html>

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Apache License, Version 2.0

Share

About the Author

JeffHeaton
Publisher
United States United States
Jeff Heaton, Ph.D., is a data scientist, an adjunct instructor for the Sever Institute at Washington University, and the author of several books about artificial intelligence. Jeff holds a Master of Information Management (MIM) from Washington University and a PhD in computer science from Nova Southeastern University. Over twenty years of experience in all aspects of software development allows Jeff to bridge the gap between complex data science problems and proven software development. Working primarily with the Python, R, Java/C#, and JavaScript programming languages he leverages frameworks such as TensorFlow, Scikit-Learn, Numpy, and Theano to implement deep learning, random forests, gradient boosting machines, support vector machines, T-SNE, and generalized linear models (GLM). Jeff holds numerous certifications and credentials, such as the Johns Hopkins Data Science certification, Fellow of the Life Management Institute (FLMI), ACM Upsilon Pi Epsilon (UPE), a senior membership with IEEE. He has published his research through peer reviewed papers with the Journal of Machine Learning Research and IEEE.

You may also be interested in...

Pro
Pro
Permalink | Advertise | Privacy | Terms of Use | Mobile
Web01 | 2.8.170525.1 | Last Updated 16 Oct 2012
Article Copyright 2012 by JeffHeaton
Everything else Copyright © CodeProject, 1999-2017
Layout: fixed | fluid