Click here to Skip to main content
15,881,139 members
Articles / Programming Languages / C#

Windows Development in C++, COM API Clients

Rate me:
Please Sign up or sign in to vote.
4.98/5 (31 votes)
3 Jan 2015CPOL7 min read 62.7K   1.6K   106  
Using the Facade Pattern to simplify development with COM based APIs
#include "stdafx.h"


/*
 * File name:		zmyblas2.c
 * Purpose:
 *     Level 2 BLAS operations: solves and matvec, written in C.
 * Note:
 *     This is only used when the system lacks an efficient BLAS library.
 */

#include "../hnum_slu_dcomplex.h"
namespace harlinn
{
    namespace numerics
    {
        namespace SuperLU
        {
            /*
                * Solves a dense UNIT lower triangular system. The unit lower 
                * triangular matrix is stored in a 2D array M(1:nrow,1:ncol). 
                * The solution will be returned in the rhs vector.
                */
            void zlsolve ( int ldm, int ncol, doublecomplex *M, doublecomplex *rhs )
            {
                int k;
                doublecomplex x0, x1, x2, x3, temp;
                doublecomplex *M0;
                doublecomplex *Mki0, *Mki1, *Mki2, *Mki3;
                register int firstcol = 0;

                M0 = &M[0];


                while ( firstcol < ncol - 3 ) { /* Do 4 columns */
      	            Mki0 = M0 + 1;
      	            Mki1 = Mki0 + ldm + 1;
      	            Mki2 = Mki1 + ldm + 1;
      	            Mki3 = Mki2 + ldm + 1;

      	            x0 = rhs[firstcol];
      	            zz_mult(&temp, &x0, Mki0); Mki0++;
      	            z_sub(&x1, &rhs[firstcol+1], &temp);
      	            zz_mult(&temp, &x0, Mki0); Mki0++;
	            z_sub(&x2, &rhs[firstcol+2], &temp);
	            zz_mult(&temp, &x1, Mki1); Mki1++;
	            z_sub(&x2, &x2, &temp);
      	            zz_mult(&temp, &x0, Mki0); Mki0++;
	            z_sub(&x3, &rhs[firstcol+3], &temp);
	            zz_mult(&temp, &x1, Mki1); Mki1++;
	            z_sub(&x3, &x3, &temp);
	            zz_mult(&temp, &x2, Mki2); Mki2++;
	            z_sub(&x3, &x3, &temp);

 	            rhs[++firstcol] = x1;
      	            rhs[++firstcol] = x2;
      	            rhs[++firstcol] = x3;
      	            ++firstcol;
    
      	            for (k = firstcol; k < ncol; k++) {
	                zz_mult(&temp, &x0, Mki0); Mki0++;
	                z_sub(&rhs[k], &rhs[k], &temp);
	                zz_mult(&temp, &x1, Mki1); Mki1++;
	                z_sub(&rhs[k], &rhs[k], &temp);
	                zz_mult(&temp, &x2, Mki2); Mki2++;
	                z_sub(&rhs[k], &rhs[k], &temp);
	                zz_mult(&temp, &x3, Mki3); Mki3++;
	                z_sub(&rhs[k], &rhs[k], &temp);
	            }

                    M0 += 4 * ldm + 4;
                }

                if ( firstcol < ncol - 1 ) { /* Do 2 columns */
                    Mki0 = M0 + 1;
                    Mki1 = Mki0 + ldm + 1;

                    x0 = rhs[firstcol];
	            zz_mult(&temp, &x0, Mki0); Mki0++;
	            z_sub(&x1, &rhs[firstcol+1], &temp);

      	            rhs[++firstcol] = x1;
      	            ++firstcol;
    
      	            for (k = firstcol; k < ncol; k++) {
	                zz_mult(&temp, &x0, Mki0); Mki0++;
	                z_sub(&rhs[k], &rhs[k], &temp);
	                zz_mult(&temp, &x1, Mki1); Mki1++;
	                z_sub(&rhs[k], &rhs[k], &temp);
	            } 
                }
    
            }

            /*
                * Solves a dense upper triangular system. The upper triangular matrix is
                * stored in a 2-dim array M(1:ldm,1:ncol). The solution will be returned
                * in the rhs vector.
                */
            void zusolve ( int ldm, int ncol, doublecomplex *M, doublecomplex *rhs )
            {
                doublecomplex xj, temp;
                int jcol, j, irow;

                jcol = ncol - 1;

                for (j = 0; j < ncol; j++) {

	            z_div(&xj, &rhs[jcol], &M[jcol + jcol*ldm]); /* M(jcol, jcol) */
	            rhs[jcol] = xj;
	
	            for (irow = 0; irow < jcol; irow++) {
	                zz_mult(&temp, &xj, &M[irow+jcol*ldm]); /* M(irow, jcol) */
	                z_sub(&rhs[irow], &rhs[irow], &temp);
	            }

	            jcol--;

                }
            }


            /*
                * Performs a dense matrix-vector multiply: Mxvec = Mxvec + M * vec.
                * The input matrix is M(1:nrow,1:ncol); The product is returned in Mxvec[].
                */
            void zmatvec ( int ldm, int nrow, int ncol, doublecomplex *M, doublecomplex *vec, doublecomplex *Mxvec )
            {
                doublecomplex vi0, vi1, vi2, vi3;
                doublecomplex *M0, temp;
                doublecomplex *Mki0, *Mki1, *Mki2, *Mki3;
                register int firstcol = 0;
                int k;

                M0 = &M[0];

                while ( firstcol < ncol - 3 ) {	/* Do 4 columns */
	            Mki0 = M0;
	            Mki1 = Mki0 + ldm;
	            Mki2 = Mki1 + ldm;
	            Mki3 = Mki2 + ldm;

	            vi0 = vec[firstcol++];
	            vi1 = vec[firstcol++];
	            vi2 = vec[firstcol++];
	            vi3 = vec[firstcol++];	
	            for (k = 0; k < nrow; k++) {
	                zz_mult(&temp, &vi0, Mki0); Mki0++;
	                z_add(&Mxvec[k], &Mxvec[k], &temp);
	                zz_mult(&temp, &vi1, Mki1); Mki1++;
	                z_add(&Mxvec[k], &Mxvec[k], &temp);
	                zz_mult(&temp, &vi2, Mki2); Mki2++;
	                z_add(&Mxvec[k], &Mxvec[k], &temp);
	                zz_mult(&temp, &vi3, Mki3); Mki3++;
	                z_add(&Mxvec[k], &Mxvec[k], &temp);
	            }

	            M0 += 4 * ldm;
                }

                while ( firstcol < ncol ) {		/* Do 1 column */
 	            Mki0 = M0;
	            vi0 = vec[firstcol++];
	            for (k = 0; k < nrow; k++) {
	                zz_mult(&temp, &vi0, Mki0); Mki0++;
	                z_add(&Mxvec[k], &Mxvec[k], &temp);
	            }
	            M0 += ldm;
                }
	
            }
        };
    };
};

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Architect Sea Surveillance AS
Norway Norway
Chief Architect - Sea Surveillance AS.

Specializing in integrated operations and high performance computing solutions.

I’ve been fooling around with computers since the early eighties, I’ve even done work on CP/M and MP/M.

Wrote my first “real” program on a BBC micro model B based on a series in a magazine at that time. It was fun and I got hooked on this thing called programming ...

A few Highlights:

  • High performance application server development
  • Model Driven Architecture and Code generators
  • Real-Time Distributed Solutions
  • C, C++, C#, Java, TSQL, PL/SQL, Delphi, ActionScript, Perl, Rexx
  • Microsoft SQL Server, Oracle RDBMS, IBM DB2, PostGreSQL
  • AMQP, Apache qpid, RabbitMQ, Microsoft Message Queuing, IBM WebSphereMQ, Oracle TuxidoMQ
  • Oracle WebLogic, IBM WebSphere
  • Corba, COM, DCE, WCF
  • AspenTech InfoPlus.21(IP21), OsiSoft PI


More information about what I do for a living can be found at: harlinn.com or LinkedIn

You can contact me at espen@harlinn.no

Comments and Discussions